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Abstract

In this paper, we carry a detailed study of mechanical systems with configuration space Q −→ Q/G for which the base Q/G
variables are being controlled. The overall system’s motion is considered to be induced from the base one due to the presence of
general non-holonomic constraints. It is shown that the solution can be factorized into dynamical and geometrical parts. Moreover,
under favorable kinematical circumstances, the dynamical part admits a further factorization since it can be reconstructed from
an intermediate (body) momentum solution, yielding a reconstruction phase formula. Finally, we apply this results to the study of
concrete mechanical systems.
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1. Introduction

We shall describe a general formalism for studying classical mechanical systems in which some of the configuration
degrees of freedom are being controlled, meaning that these are known functions of time. We will work under the
(differential geometric-kinematical) assumption that the controlled variables live in the base of a principal fiber bundle
Q −→ Q/G = B. The remaining variables can be thought of as living in a Lie group G and the equations for
these fiber unknowns are derived by the hypothesis that the overall motion respects some (general) non-holonomic
constraints which are present in the system.

A special case is that in which the underlying momentum map give conserved quantities, even when some of the
variables are being acted by control forces. In this case, it is clear that motion in the base variables must induce
motion in the remaining group variables in order for the momentum to be constant during the resultant motion. A
concrete example is given by a self-deforming body for which the shape evolution (base variables) is known and
global reorientation (group unknown) is induced by total angular momentum conservation [3].

In this paper, we consider the more general situation in which fiber motion is induced from the base one by the
presence of (linear or affine) non-holonomic constraints. These are represented by a distribution D ⊂ T Q [2,4] and we
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shall refer to them as D-constraints. The information telling us how the base variables are moving is represented by a
base curve c̃(t) ∈ B or, equivalently, by a curve d0(t) ∈ Q projecting onto c̃. The desired curve c(t) = g(t)·d0(t) ∈ Q
describing the full system’s physical motion is defined by the requirement that it projects onto c̃ on the base at each time
(i.e. the base variables are the given controlled ones) and that it satisfies the corresponding equations of motion plus
the D-constraints. The base-controlled hypothesis can be seen as a set of time-dependent constraints and g(t) ∈ G as
the d0-dependent (or gauge-dependent, see Section 2.4.3) fiber unknown.

The corresponding equations for g(t) are derived by making dynamical assumptions, i.e. assumptions on the nature
of the forces acting on the system. By using variational techniques, we give explicitly the equations of motion
in Section 2. They correspond to the non-holonomic momentum equation of [2] with time-dependent coefficients
evaluated along d0(t). Using the kinematical structure of the system, in Sections 2.4.3 and 4.1, we show how
the solution c(t) can be factorized by considering specific gauges d0(t), yielding that each factor has either a pure
geometrical (kinematical) definition or it obeys dynamical equations which are simpler than the overall fiber ones.

In Section 3, we shall carry out a detailed analysis of systems with a special kinematical structure, focusing on
the geometric-dynamical factorization of the solution mentioned above. Moreover, in Section 4, we show that under
favorable kinematical circumstances (e.g. in the presence of horizontal symmetries [2]), the dynamical factor g(t)
of the solution c(t) ∈ Q admits a further factorization. In fact, we can write reconstruction phase formulas [6]
for g(t). The obtained phase formulas relate the overall system’s evolution to the geometry and dynamics of simpler
intermediate solutions which, in turn, live in smaller spaces (coadjoint orbits). Consequently, these formulas generalize
the ones obtained in [10,3] for rigid bodies and self-deforming bodies, respectively, to the more general setting
of D-constrained induced motion. Notice that phase formulas become interesting and useful when the dynamical
contribution can be expressed in terms of the system’s dynamical quantities like energy and/or characteristic times
(see, e.g., [10]). This is generically accomplished in Section 4 and exemplified in Section 5.

The formalism presented in this work, for studying D-constrained, base-controlled systems, applies to a larger
class of mechanical systems than the one encoded in [3]. First, it applies to systems with general configuration space
Q endowed with a principal bundle structure.1 Also, in the second place, it allows for (linear or affine) D-constraints,
and not only momentum conservation, to rule the system’s dynamics. Indeed, in examples 5.3 and 5.4, we are able to
answer two natural questions which arise from [3]: what happens to the corresponding phase formulas when magnetic-
type forces are acting upon a deforming body, and thus, when the (angular) momentum is no longer conserved?; how
does a self-deforming body move when there are additional (internal) non-holonomic constraints between the (no
longer controllable) shape variables?

To end this introduction, we would like to comment on the applications of the present work to mechanical control
theory. First, note that control problems are, in a sense, orthogonal to the one we described so far. In this paper, we
claim to know the base variables dynamics and we want to find the induced fiber motion; while in control theory one
starts with a desired fiber dynamics and tries to find which base curve induces it (and, after that, how to implement this
base motion via control forces). Nevertheless, the spirit of this paper is to think of the known base dynamics as coming
from direct observation or measurement (example 5.3 illustrates this point very clearly). Indeed, an interesting feature
of this kind of systems is the fact that the overall motion c(t) can be constructed from that in the base using only
the kinematics of c̃(t) and without actually knowing the forces which are inducing such base motion. The results on
the induced fiber motion, obtained by the formalism we describe below, can be thus used for theoretically correcting
the a priori fiber dynamics prediction when the observed base dynamics deviates from the control-theoretical desired
one. Also, analytical phase formulas provide interesting tools for directly testing different control configurations and
theoretical methods.

2. Controlled systems with additional non-holonomic constraints

2.1. The kinematical setting

In the remaining, we shall focus on mechanical systems with general non-holonomic linear (or affine, see
Section 3.2) constraints. More precisely, our setting consists of a mechanical system described by the data
(Q, L , G, D):

1 Notice that in [3], Q represented specifically the configuration space of a deforming body.
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• Let Q denote the configuration space and G a symmetry Lie group acting on Q by the left such that Q
π

−→ Q/G
is a principal G-bundle. We shall call, as usual, B := Q/G the shape space (see [9]). We denote the action by g · q
and the induced infinitesimal action by ρg∗ : T Q −→ T Q.

• Let kq(·, ·) denote a G-invariant Riemannian metric on Q and kq(·) : Tq Q −→ T ∗
q Q the induced bundle

isomorphism.
• Let L : T Q −→ R denote the G-invariant Lagrangian (with respect to the lifted G-action on T Q) given by the

(kq -)kinetic energy K (q̇) minus G-invariant potentials (see also Appendix A).
• Let D ⊆ T Q be a constraint distribution.

We shall assume further:

(H1) D is G-invariant and Dq + Vq = Tq Q, for all q ∈ Q and Verq = Ker(π∗q) denoting the vertical subspace of
Tq Q. This is referred to as the principal case in [2].

Now, suppose that, for such a system, the base variables are being controlled in a certain known way. This means,
that

(H2) we are given a curve d0(t) in Q for t ∈ I := [t1, t2] or, equivalently, a map c̃ : [t1, t2] −→ Q/G s.t.
π(d0(t)) = c̃(t). The time evolution of the controlled system is then described by a curve c(t) ∈ Q such that

π(c(t)) = c̃(t)

for each t ∈ [t1, t2].

The above means that

c(t) = g(t) · d0(t) (1)

where the curve g(t) in G represents the (d0(t)-dependent) unknown of our controlled mechanical problem.

Definition. We shall refer to the data (Q, L , G, D, c̃) as a base-controlled (D-)constrained dynamical system.

Note that, if the controlled problem has a unique solution c(t) for each initial value (c(t1), ċ(t1)) ∈ Tc(t1)π
−1(c̃(t1)),

then for each curve d0(t) in Q lying over c̃(t) ∈ Q/G, there is a unique g(t) satisfying (1). In this case, the initial
values for the unknown in G read

c(t1) = g(t1) · d0(t1)

·
c(t1) =

d
dt

(g · d0)(t1).
(2)

The curve d0(t) will be called gauge choice or, simply, gauge. This terminology is motivated by the analogy
between the freedom in choosing among such curves projecting to the same c̃ in shape space and gauge freedom in
classical gauge field theories (see [9,11], the references therein and also Section 2.4.2).

Remark 2.1 (Restricted Configuration Space). Note that (H2) implies (but it is not equivalent to!) the following
holonomic constraint:

c(t) ∈ π−1(c̃(I )).

For a specific problem in which c̃ is fixed, one can restrict the analysis to Q̃ = π−1(c̃(I )). Nevertheless, in what
follows, we continue with the study of generic c̃’s and thus express the results in terms of the kinematical structure of
the whole Q. Notice that this is the more convenient procedure for studying systems in which c̃ can be (dynamically)
perturbed.

Remark 2.2 (Vertical D-Constraints). Note that the dimension assumption (H1) states that the D-constraints are
vertical, in the sense that it ensures that the equations of motion (locally) drop to the base Q/G with no D-constraints
remaining there. In other words, the base curve c̃(t) can be arbitrarily chosen within Q/G. For example, if the sum
is direct, i.e., Dq ⊕ Vq = Tq Q then D defines a principal connection and we are in the purely kinematical case [2]
described in Section 4.3. In the case Dq ∩ Vq = 0 but Dq ⊕ Vq 6= Tq Q, then constraints are also to be considered in
the motion of the base variables and, thus, the base dynamics could not be (arbitrarily) controllable.
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2.1.1. Kinematical ingredients
We now recall some known definitions and properties for mechanical systems that we shall use through the paper.
First, recall that for simple mechanical systems with symmetry [1,7] as described above, the lifted G action on T Q

always has an (equivariant) momentum map J : T Q −→ g∗ given by〈
J (vq), X

〉
=
〈
kq(vq), X Q(q)

〉
,

for X ∈ g. Let us also recall another ingredients (see e.g. [9]):

• Locked inertia tensor Iq : g −→ g∗,

Iq = σ ∗
q ◦ kq ◦ σq

with σq : g −→ Tq Q denoting the infinitesimal generator map, σq(X) = X Q(q). Iq defines a symmetric, non-
degenerate inner product in g. Because the metric kq is G-invariant, I also satisfies the equivariance property:

Ig·q = Ad∗
g ◦ Iq ◦ Adg−1 .

• The momentum map J is Ad∗-equivariant, i.e.,

J (g · m) = Ad∗
g J (m)

with Ad∗
g = (Adg−1)t denoting the (left) coadjoint representation of G on g∗ and t the transpose. This follows

from the identity

σg·q(X) = ρg∗q(σq(Adg−1 X)).

Now, from (1) we have that

d
dt

c(t) = ρg(t)∗d0(t)

(
σd0(t)

(
g−1 d

dt
g(t)

))
+ ρg(t)∗d0(t)

d
dt

d0(t) (3)

and thus,

J

(
d
dt

c(t)

)
= Ad∗

g(t) Id0(t)

(
g−1 d

dt
g(t)

)
+ Ad∗

g(t) J

(
d
dt

d0(t)

)
. (4)

We can think of J0(t) := J ( d
dt d0(t)) as the apparent or internal momentum along d0(t) and I0(t) := Id0(t) as the

locked inertia tensor changing with the gauge motion d0(t). Notice that J ( d
dt c(t)) = Ad∗

g(t)Π (t) for

Π (t) := I (d0(t))(g
−1 ·

g(t)) + J (
·

d0)(t). (5)

This Π (t) represents the body momentum, i.e. the momentum J (ċ(t)) as seen from a reference frame moving with
g(t) which, in turn, depends on the gauge choice d0(t).

2.2. Dynamical hypothesis

The assumption (H2) above can be interpreted as giving a time-dependent type of kinematical constraint on the
original system, in addition to the one represented by the distribution D ⊆ T Q. To determine the motion of such a
twice kinematically constrained system, i.e. to find2 c(t) in Q, we need to add dynamical information. This information
consists in assumptions about the nature of the forces which are acting upon the system in order to satisfy the imposed
kinematical constraints.

For the set of constraints corresponding to the distribution D, we shall assume

(DH1) D’ Alambert’s Principle: The D-constraint forces lie in the annihilator space of the kinematical distribution
D.

2 Equivalently, for a chosen gauge d0(t), to find the corresponding g(t) in G.
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Denoting F D
: T Q −→ R the D-forces (seen as 1-forms on Q) which act on the system enforcing the D-

constraints, (DH1) means that

F D(v) = 0

for all “virtual displacement” v ∈ D ⊂ T Q. If (DH1) is not satisfied by the system’s forces, we must then know3 the
D-constraint forces and add them to the equations of motion (see Section 2.4.1).

For the time-dependent control like constraints represented by the shape space curve c̃(t) ∈ Q/G, the assumption
takes a less usual form:

(DH2) The forces which are inducing the motion c(t) to satisfy π(c(t)) = c̃(t) are of a kind that we shall denote as
good internal ones. Good internal forces seen as 1-forms Fc

int : T Q −→ R satisfy

Fc
int(δc) = 0

for all vertical variations δc =
d
ds |s=0(g(t, s) · d0(t)) in D and any gauge d0(t) (see also below).

In other words, good internal forces are such that they do not affect dynamically (i.e. by adding extra terms) the
vertical part of the equations corresponding to (Q, L , G, D). This idea is already present in [2], in terms of the validity
of the non-holonomic momentum equations when internal (shape space) control forces are present.

Example 2.3 (Motion of Self-Deforming Bodies). Let Q = R3N−3 be the configuration space of an N -particles system
modeling a deforming body. In this case, usual internal forces between the particles of the system satisfying the strong
action–reaction principle [5] are good internal forces. For details, see [3].

Remark 2.4 (Non-Food Internal Forces). If the constraint forces acting on the controlled base variables are not of
good internal type, then we must add the extra piece of information missing, this is, how the equations have to be
modified by adding the non-vanishing terms Fc(δc) (see 2.4.1). In the case of the above example, this means that if
there are, say, electromagnetic forces acting on the self-deforming body which do not satisfy the strong action–reaction
principle, then one must know the underlying magnetic field data and correct the angular momentum conservation
equations as usual (see e.g. [5], and also Sections 4.5 and 5.4).

For control purposes, the equations of motion following from (DH1) and (DH2) for the base variables r ∈ B =

Q/G can be locally written as (for details see [2])

M(r)r̈ = −C(r, ṙ) + N (r, ṙ , J (g, ġ)) + Fpot
+ Fc

int

where g denotes the (local) vertical part of variables in Q ' Q/G × G, J the (generalized, non-holonomic)
momentum, Fpot the potential forces acting on B and Fc

int the control forces mentioned in (DH2). Also, M denotes
the mass matrix of the system, C the Coriolis term (quadratic in ṙ ) and N a term being quadratic in ṙ and 〈J, ξ〉, where
ξ is a q-dependent element in g = Lie(G).

In what follows, we shall assume that the system is being base-controlled, so the control forces are inducing via
the above equation the prescribed motion c̃(t) ≡ r(t). The problem is then to find the remaining vertical part of the
motion, which is induced by the one in the base B because of the presence of the D-constraints.

2.3. The variational principle

The equations of motion for the above described base-controlled D-constrained system, satisfying (H1, 2) and
(DH1, 2), can be deduced from an adapted variational principle.

Explicitly, we shall assume that the solution curve c(t) is an extremal of the action functional

SQ =

∫ t2

t1
L(

·
c)dt

3 Or to know some other information about them leading to the corresponding equations of motion.
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for deformations of the following specific kind:

c(t, s) = g(s) · c(t). (6)

These kind of deformations can be called vertical following the ideas of [4]. Also following [4], from (DH1) we shall
restrict the variations to the ones satisfying the D-constraints, i.e., δc ∈ Dc(t).

Let I = [t1, t2] and Ω(Q; c̃(t), q1, q2) denote the space of smooth curves I −→ Q with fixed end points
q1, q2 ∈ Q such that π(c(t)) = c̃(t). Note that, for a given (any) gauge choice d0(t) such that π(d0(t)) = c̃(t),
any deformation can be written as

c(t, s) = g(t, s) · d0(t). (7)

and thus

Ω(Q; c̃(t), q1, q2) ≈ Ωd0(G; g1, g2)

with Ωd0(G; g1, g2) being the space of smooth curves I −→ Q with fixed end points gi , s.t. gi · d0(ti ) = qi for
i = 1, 2.

So, summing up, our problem is equivalent to the following (gauge invariant) variational formulation:

P1 (Gauge invariant formulation). Finding an extremal c(t) of the action SQ , i.e. δSQ = 0, among the curves in
Ω(Q; c̃(t), q1, q2) for vertical deformations δc(t) =

d
ds |s=0c(t, s) induced by (6), vanishing at the end points,

i.e. δc(ti ) = 0 for i = 1, 2, and with both
·
c(t) and δc satisfying the D-constraints.

Once the gauge is fixed, the action S induces an equivalent non-autonomous Lagrangian system on the G which
is, in turn, equivalent to the following:

P2 (Gauge covariant formulation). Finding extremal curve g(t) in the set Ωd0(G; g1, g2) for the action

SG[d0] =

∫ t2

t1
Ld0(g,

·
g, t)dt,

i.e. δSG[d0] = 0, satisfying the gauge-induced D-constraints, i.e.,
·

d0(t) + (g−1 ·
g)Q(d0(t)) ∈ Dd0(t) (8)

and for variations δg(t) =
d
ds |s=0g(t, s), δg(ti ) = 0, i = 1, 2, satisfying the D-constraints:(

g−1 d
ds

∣∣∣∣
s=0

g

)
Q

(d0(t)) ∈ Dd0(t). (9)

Notice that, although different gauge choices shall lead to different time dependence of the g(t) equation’s
coefficients, the full solution c(t) is the same for all d0’s. In other words, though the equations for g(t) (and thus
g(t) itself) are not gauge invariant, the solution c(t) is. On the other hand, g(t) can be seen as being gauge covariant
(see Remark 2.5).

In the above formulation (P2), Ld0 is L(ċ) with c(t) given by (1). It is easy to see that it can be put in the form
of the (left) G-invariant non-autonomous Lagrangian given by Eq. (57) of Appendix A in terms of the body velocity

ξ = g−1 ·
g.

Finally, note that variations δξ =
d
ds |s=0(g−1 ·

g) induced by variations δg =
d
ds |s=0g(t, s) satisfy the following

identity:

δξ −
d
dt

(
g−1δg

)
= [ξ, g−1δg], (10)

where [, ] denotes the Lie bracket on g.

Remark 2.5 (Gauge Covariance). Since D is G-invariant, (8) is gauge covariant: if d̃0(t) = gcg(t) · d0(t) is another
gauge, then g(t) in (1) satisfies the D-constraint equation (8) for d0(t) iff g̃(t) := g(t)g−1

cg (t) satisfies the equation

analogous to Eq. (8) for the new gauge d̃0(t).
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2.4. Equations of motion

Note that, as a consequence of Newton’s second law, the equations for the unknown g(t) shall be second-order
ones. Also, by the time-dependent control constraint, they shall also be non-autonomous and gauge-dependent, i.e., its
coefficients will depend on time through the chosen d0(t).

We shall start with the gauge invariant formulation (P1). Taking into account that the variations are of the form
(6),

δSQ = 0

straightforwardly implies

i∗c(t)

(
d
dt

J (
·
c)

)
= 0 (11)

where, for any q ∈ Q, iq : gq ↪→ g denotes the inclusion, i∗q : g∗ ↪→ (gq)∗ the canonical projection and

gq
:= {X ∈ g, X Q(q) ∈ Dq}.

The above equation is equivalent to the non-holonomic momentum equation of [2], evaluated on the controlled curve
c(t) of Eq. (1).

Remark 2.6 (Non-Necessity of (H1) nor (H2)). Eq. (11) is one of the equations of motion of any system whose
kinematics is as in Section 2.1 without the need of (H1, 2). The only dynamical hypothesis needed is (DH1) plus
the fact that any other force acting on the system (seen as 1-forms on Q) is such that it vanishes when evaluated on
vertical variations. What these last kinematical hypothesis (H1, 2) add is: that no D-constraints remain on the base
variables and that these are being controlled, so (11) is the only equation of motion (not of constraint) left to solve in
the system.

These are k := dim gc(t)
= dim gc(t1) = const. equations coupled to the (dim g − k) number of D-constraint

equations:

·
c(t) ∈ Dc(t).

Since the base control hypothesis (H2) leave only dim g degrees of freedom, Eq. (11) and the above D-constraint
equations determine uniquely c(t) because of (H1).

Below, we shall give more explicit equations for the unknown g(t) by fixing a gauge choice d0(t) and working
in the gauge covariant formulation (P2).4 To illustrate on the underlying calculation, we shall derive the equations
directly from (P2), though they can be also derived from (11) using the decomposition (1). Let us, thus, evaluate

0 = δSG[d0] =

∫ t2

t1

〈
I (d0(t))ξ + J (

·

d0)(t), δξ

〉
.

By Eq. (10) and integration by parts, we have

= −

∫ t2

t1

〈
d
dt

(
I (d0(t))ξ + J (

·

d0)(t)

)
+ ad∗

ξ

(
I (d0(t))ξ + J (

·

d0)(t)

)
, g−1δg

〉
where ad∗

ξ = −(adξ )
t denotes the (left) coadjoint action. Notice that g−1δg is arbitrary only among variations

satisfying the D-constraint (9), then

i∗d0(t)

[
d
dt

(
I (d0(t))ξ + J (

·

d0)(t)

)
+ ad∗

ξ

(
I (d0(t))ξ + J (

·

d0)(t)

)]
= 0 (12)

must hold. These are k = dim gq (constant ∀q ∈ Q) equations of motion for the body velocity ξ(t) = g−1ġ(t) which
are coupled to the (dim g − k) non-holonomic constraint equations Eq. (8) also for ξ(t).

4 We do need (H1, 2) for (P2).
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Before passing to the next section, we give some properties of the subspaces which are involved in (12) and which
follow from the G-invariance of D.

Proposition 2.7. The following holds:

• gg·q
= Adgg

q

• Adg ◦ iq = ig·q ◦ Adg .

Example 2.8 (The Purely Kinematical Case of [2]). In this case, D ∩ T OrbG(Q) is trivial and thus gq
= {0} for all

q ∈ Q. Equation of motion (11) is trivial and the motion of the system is only determined by the constraint equation
ċ ∈ D. See also Section 4.3.

Example 2.9 (The Case of Full Horizontal Symmetries [2]). In this case, there exists a subgroup H ⊂ G such that

gq is constantly h = Lie(H) for all q ∈ Q. Then, i∗h(J (
·
c)) is a conserved quantity along the solution c(t). See also

Section 4.4.

Example 2.10 (The Case D = T Q and Momentum Conservation). When D = T Q and so the D-constraints are
trivial, equations (11) (equivalently, (12)) imply the conservation of the momentum J along the solution c(t). This is
the case, for example, of a self-deforming body which freely rotates around its center of mass with conserved angular
momentum [3,11].

2.4.1. Applied forces
In the presence of arbitrary additional external forces F : T Q −→ R, the corresponding equations of motion are

i∗c(t)

(
d
dt

J (
·
c)

)
= i∗c(t) ◦ σ ∗

c(t)(Fc(t)).

Also, Eq. (11) can be rewritten as

d
dt

J (
·
c) = Γc(t)

for a curve Γc(t) ∈ Ker(i∗c(t)). This Γc(t) can be interpreted as an external (generalized) torque caused by the forces
F (see example 5.4). Within the gauge covariant formulation, the corresponding equations of motion are

d
dt

(
I (d0(t))ξ + J (

·

d0)(t)

)
+ ad∗

ξ

(
I (d0(t))ξ + J (

·

d0)(t)

)
= σ ∗

d0(t)

(
ρ∗

g∗d0(t)Fc(t)

)
=: Γd0(t). (13)

Now, assuming that there are no other forces than the D-constraint ones F D and that (DH1, 2) hold, we
arrive at Eq. (13) with F = F D . Notice that, since (DH1) holds, Eq. (12) above follows by projecting via
i∗d0(t)

: g∗ ↪→ (gd0(t))∗. If we choose a splitting g = gd0(t) ⊕ Od0(t) with PO
: g −→ gd0(t) the corresponding

projector, we get that the external torque Γd0(t) ∈ Keri∗d0(t)
present in the r.h.s. of Eq. (13) can be also written as5

Γd0(t) =

(
1 − PO

)∗

◦ σ ∗

d0(t)

(
ρ∗

g∗d0(t)F D
c(t)

)
.

Expression (13) gives dim g equations coupled to the (dim g−k) equations of D-constraints. Nevertheless, notice that
in (13) we have (dim g − k) new unknowns: the D-constraint forces F D .

2.4.2. Bundle formulation
The gauge invariant formulation (P1) and the gauge fixed formulation (P2) of the problem, both have as

underlying G-bundle Q I −→ I which is related to Q −→ Q/G by the pull-back diagram

Q I −→ Q
↓ ↓

I
c̃

−→ Q/G.

5 The following expression yields the same Γd0 (t) for any choice of PO since Fc(t) vanishes on D ⊂ T Q by (DH1).



342 A. Cabrera / Journal of Geometry and Physics 58 (2008) 334–367

Moreover, Q I is a trivial G-bundle and the corresponding global sections are the gauge curves d0(t) projecting to c̃(t)
on shape space. Choosing a section, so Q I ≈ I × G, we arrive at the non-autonomous system on G as described by
(P2).

Remark 2.11 (Relation to 1-d Gauge Field Theories). The setting above gives a description of our time-dependent
problem in terms of a 1-dimensional gauge field theory. Here, the fields are the sections I −→ Q I ≈ I × G and G is
the gauge group. See also [9] and the references therein. Notice that, in this context, the corresponding field theory is
not gauge invariant since, actually, the problem consists in finding the correct gauge transformation taking d0 into the
desired solution c = g · d0.

There is also another set of bundles which are relevant for this problem, specially for the study of the equations of
motion. These are the vector bundles gD , gD

I , which are related by the pull-back diagram

gD
I −→ gD

↓ ↓

I
c̃

−→ Q

with gD
:= tq∈Q gq . The vector bundle gD can be also defined as σ−1(D), for the vector bundle morphism

σ : Q × g −→ T Q

: (q, X) 7−→ X Q(q)

with D ⊆ T Q seen as a vector subbundle. Note that bundle gD
I is also trivial since I is contractible. For a given choice

of gauge curve d0(t), there must exist a smooth curve T (t) ∈ GL(g) such that the set

{T (t)X i }
dim gd(t1)

i=1 (14)

is a basis of gd0(t) if {X i }
dim gd(t1)

i=1 is a basis of the vector space gd0(t1) ⊆ g. This is the pull-back (to gD
I ) version of the

moving basis formulation of [2,4].

Remark 2.12 (Vector Bundle Non-Triviality). From Example 2.9 we see that the geometry of the bundle gD plays a
crucial role in the form of the equations of motion. In other words, the geometry of gD enters in the non-commutativity
of d

dt and i∗c(t) in Eq. (11). Even though the bundle gD
I is always trivializable, if it is not directly trivial, the need of using

time-dependent sections T (t) enters non-trivially in the equations of motion. See also Sections 3.4 and 3.3 where this
effect is isolated from others.

2.4.3. Non-holonomic gauges
Recall the constraint equations (8) which are coupled to the motion ones (12). Being explicitly gauge-dependent,

a natural question that follows is: is there a gauge, i.e. a choice of d0(t), which simplifies these equations?
If d0(t) satisfies

d
dt

d0(t) ∈ Dd0(t), ∀t ∈ I (15)

then, (8) is equivalent to the simpler condition

ξ(t) ∈ gd0(t). (16)

We shall call a gauge d0 satisfying (15) a non-holonomic gauge and denote it as dNH
0 .

Following [2], given the base curve c̃(t) ∈ Q/G, a geometrically defined candidate for non-holonomic gauge dNH
0

fulfilling Eq. (15) is given by the horizontal lift of c̃(t) with respect to the non-holonomic connection. The gauge dNH
0

obtained in this way is defined by(
i∗
dNH

0
I (dNH

0 (t))idNH
0

)−1 (
i∗
dNH

0
J (ḋNH

0 (t))
)

= 0

AKin
dNH

0
(

·

dNH
0 (t)) = 0

(17)
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where i∗
dNH

0
I (dNH

0 (t))idNH
0

: gdNH
0 −→

(
gdNH

0

)∗

and AKin
: T Q −→ U denotes a U-valued 1-form that projects Uq

onto itself and has Dq as kernel. The subbundle U ⊂ T Q can be defined to be, at each q ∈ Q, the (kinetic energy

metric) orthogonal complement of (gq)Q (q) within the subspace Tq (OrbG(q)): Tq (OrbG(q)) = (gq)Q (q)
⊥

⊕ Uq
(see [2] for details).

In this case, the gauge factor dNH
0 (t) of the solution c(t) can be kinematically determined from the base-controlled

dynamics’ c̃(t). We also have

Proposition 2.13. Let dNH
0 (t) be a non-holonomic gauge and consider the associated body momentum Π (t) given

by (5). The following holds:

• the constraints read g−1 ·
g(t) ∈ gdNH

0 (t),
• the reconstruction of g(t) from i∗

dNH
0

Π (t) is:

g−1 ·
g(t) =

(
i∗
dNH

0
◦ I (dNH

0 (t)) ◦ idNH
0

)−1
(

i∗
dNH

0
Π (t) − i∗

dNH
0

J (

·

dNH
0 )(t)

)
Eq. (17)

=

(
i∗
dNH

0
◦ I (dNH

0 (t)) ◦ idNH
0

)−1
i∗
dNH

0
Π (t),

• the equation of motion for Π (t) reads

i∗
dNH

0 (t)

 d
dt

Π (t) + ad∗(
i∗
dNH
0

◦I (dNH
0 (t))◦i

dNH
0

)−1(
i∗
dNH
0

Π (t)

)Π (t)

 = 0,

• which is coupled to the constraint equation for Π (t):

I −1
0 (t)(Π (t) − J (

·

dNH
0 )) ∈ gdNH

0 (t).

Remark 2.14 (No Constraints and the Mechanical Gauge). Note that when D = T Q, i.e., when there are no
constraints, the non-holonomic connection coincides with the mechanical connection (see for example [9] and the
references therein) and, thus, the non-holonomic gauge reduces to the mechanical gauge dMech

0 defined by

J (

·

dMech
0 (t)) = 0. (18)

3. Special cases

3.1. The conserved momentum case

Here we describe base-controlled systems with no additional D-constraints, but whose motion is governed by
momentum conservation. This case encodes an important class of systems in which the fiber motion is induced from
the base in order to keep the momentum constant. In Section 4.2, we shall apply this description to the study of
reconstruction phases for this systems.

There are two ways of encoding this conserved momentum case in the general D-constrained case described above.
One is to think that D = T Q and the momentum J as giving conserved quantities due to horizontal symmetries of
the whole G (see [2] and Section 4.4). Another, is to think

J (ċ) = µ = const.

as an affine constraint on the system (see Section 3.2). Both strategies lead to the same results that we shall derive
below in a (third possible) direct way, by analyzing the corresponding equations of motion.

Since no D-constraints are present in the system, we only need to assume (H2) and (DH2) from Sections 2.1
and 2.2, respectively. From these, using the variational techniques of 2.3, it follows that the momentum map J is
conserved along the physical motion of the system c(t) ∈ Q, i.e.
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d
dt

J (ċ(t)) = 0, ∀t. (19)

The non-autonomous, second-order equations of motion for g(t), derived from (19), read

0 = ad∗

ξ(t)(I0(t)ξ(t) + J0(t)) + I0(t)
d
dt

(ξ(t)) +
d
dt

(I0(t))ξ(t) +
d
dt

J0(t) (20)

with ξ(t) = g−1 d
dt g(t) ∈ g and initial values (g(t1),

·
g(t1)) fixed by (2). We shall now focus on the Hamiltonian

structure of the equations of motion.
Let d0 denote any gauge. Since Iq is a linear isomorphism for each q ∈ Q, the map sending ξ 7→ Π defined by

Eq. (5), which can be seen as a time-dependent Legendre transformation, is invertible for all t :

ξ(t) = I −1
0 (t)(Π − J0(t)). (21)

We also see that Eq. (19) is equivalent to

d
dt

Π (t) = −ad∗

I −1
0 (t)(Π (t)−J0(t))

Π (t). (22)

We will now transform Eq. (20) into first-order non-autonomous equations on T ∗G making use of underlying
geometrical structures. Recall that T ∗G is isomorphic as a vector bundle to G × g∗ via left translations, i.e., by

taking body coordinates [1,7]. Also recall the two maps G × g∗
L
⇒
π

g∗ described in Appendix B. We can now state the

following

Proposition 3.1. Let g(t) be a curve in G and Π (t) = I0(t)g−1 d
dt g(t) + J0(t). The curve g(t) is a solution of (20)

iff the curve (g(t),Π (t)) is an integral curve of the time-dependent vector field

X (g,Π , t) = (g(I −1
0 (t)(Π − J0(t))), −ad∗

I −1
0 (t)(Π−J0(t))

Π )

on G × g∗ (∼ T ∗G). In this case, if L(g(t1),Π (t1)) = Ad∗

g(t1)
Π (t1) = µ, then (g(t),Π (t)) ∈ L−1(µ) ≈ G for all

t ∈ I .

Remark 3.2 (Time-Dependent Reduction). Recall that we started with an, a priori, 2 × dim G-dimensional problem,
defined by the non-autonomous second-order equation (20) for g(t). Now, due to the conservation of the momentum
J , we were also able to reduce the dimensionality to dim G = dim(L−1(µ)) because Π (t) must be Ad∗

g−1(t)
µ.

From the above proposition (equiv. form Eq. (22)) we have that

Π (t) ∈ Oµ ⊂ g∗

with Oµ denoting the G-coadjoint orbit through µ in g∗. So, finally, to solve for g(t) ∈ G:

(1) we have to solve the non-autonomous first-order differential equation (22) on Oµ to obtain Π (t) and
(2) then reconstruct g(t) from Π (t) in the Gµ-bundle L−1(µ) ≈ G −→ Oµ.

This last step is studied in Section 4.2 below (see also Appendix B).

Remark 3.3 (Characterizing the Reduced Dynamics in Oµ). In this paper, we elaborate on the factorization of the
solution c(t) = g(t)d0(t) and we give reconstruction phase formulas for g(t) associated to (horizontal) conservation
laws. This last corresponds to step (2) above and is of geometric (kinematic) nature. Now, since these reconstruction
formulas involve the geometry of the reduced dynamic’s solution curve Π (t) ∈ Oµ (e.g. knowing that it closes
after a certain time T and the geometry of this loop in Oµ), in order to fully characterize the solution c(t) at times
T when the formulas yield simple closed expressions, we have to deal with the problem of studying the solutions
of the non-autonomous equation (22). This problem corresponds to step (1) above and is of dynamical nature. In
Ref. [3], G = SO(3) and a dynamical analysis of the reduced solution on the sphere Oµ = S2

‖µ‖
was carried out

by considering (non-conserved) energy level sets. In our general G setting, obtaining such a characterization is more
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involved. One strategy for studying Π (t) consists in considering a Hamiltonian structure for the non-autonomous
equation (22). This can be done, as usual [1], by adding time t and momentum conjugated to time E as variables.
The resulting symplectic phase space is Oµ × R × R∗

3 (Π (t), t, E(t)), where the new variable E becomes related
by the corresponding Hamiltonian equations to the (non-conserved) kinetic energy K of the mechanical system (see
Appendix A) via

E(t) = −K

(
d
dt

c(t)

)
+ 〈Π (t), I −1

0 (t)J0(t)〉.

Consequently, by knowing the evolution of the energy K we can obtain (part of) the desired information about the
dynamics of Π (t).

3.2. Affine D-constraints

In this subsection we shall follow [2] and [4] to show how to handle affine D-constrained controlled systems. By
an affine D-constraint we mean one of the type

AD
q (q̇) = γ (q, t) (23)

where AD
: T Q −→ T Q is a linear fiber projector defining an Eheresmann connection with Ker AD

= D ⊂ T Q.
We shall denote, as usual, the vertical subbundle by V = Im AD

⊂ T Q. The field γ (q, t) is then vertical valued, that
is, γ (q, t) ∈ Vq∀q, t . Since our setting involves the geometry of the principal G-bundle Q −→ Q/G, we assume the
following compatibility conditions to hold:

(i) AD is G-invariant, that is ρg∗q ◦ AD
q = AD

g·q ◦ ρg∗q ,
(ii) γ is G-invariant, that is γ (g · q, t) = ρg∗qγ (q, t).

From the G-invariance of AD follows the G-invariance of D. We further assume the dimension condition on D,
namely, (H1) of Section 2.1. Now, we consider the affine version of the Lagrange–D’Alambert principle present
in [4]:

PAff The curve q(t) is a solution for the above stated non-holonomic affine-constrained system iff q̇(t) satisfies the
affine constraints (23) and if for any variation q(t, s) with fixed end points such that δq ∈ Dq , then

δ

∫ t2

t1
L(q, q̇)dt = 0.

As in Section 2.3, we adapt this variational formulation to the base-controlled case by considering only vertical
variations c(t, s) = g(t, s) · d0(t) for any gauge d0(t).

From this, it follows

Proposition 3.4. The equations for g(t) in order for c(t) = g(t) · d0(t) to be a solution for the affine-constrained and
controlled system satisfying (i) and (ii) described above are: the same equations of motion (12) for ξ = g−1ġ as in
the linear (non-affine) constraint case plus the constraint equation

AD
d0(t)

[
ḋ0(t) + (g−1ġ)Q(d0(t))

]
= γ (d0(t), t). (24)

The fact that the equation of motion for g−1ġ is the same for the affine and linear cases is already commented, in
terms of the non-holonomic momentum equation, in [2] (see page 27).

As before, we can simplify the constraint equation by choosing suitable gauges d0. In a non-holonomic gauge dNH
0 ,

Eq. (24) become

AD
dNH

0 (t)

[
(g−1ġ)Q(dNH

0 (t))
]

= γ (dNH
0 (t), t)

because AD
dNH

0 (t)
(ḋNH

0 (t)) = 0. But, if we define an affine non-holonomic gauge dAff
0 to be one satisfying

AD
dAff

0 (t)
(ḋAff

0 (t)) = γ (dAff
0 (t), t) (25)
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then, Eq. (24) reads,

g−1ġ ∈ gdAff
0 (t)

which is simpler to handle. Notice that Eq. (25) plus the requirement π(dAff
0 (t)) = c̃(t) do not determine dAff

0 (t)
uniquely since dim D can be grater than dim B. On the other hand, when the field γ = 0, a non-holonomic gauge is
an affine gauge.

In Section 5.2, we apply this general considerations to study the motion of a controlled ball on a rotating turntable.

3.3. The case G abelian

We now illustrate the structure of the equations in the case G is abelian. This allows us to isolate the contribution to
the motion coming from the non-trivial geometry of the vector bundle gD from the Lie algebraic part of the equations
of motion (i.e. terms involving ad).

When G is abelian, Adg is the identity for all g ∈ G, and thus

• gg·q
= gq

∀g ∈ G, i.e., the subspaces gq are vertically constant in Q, thus gd0(t) = gc(t) and i∗c(t) = i∗d0(t)
,

• I (g · q) = I (q), thus I (c(t)) = I (d0(t)),

• J (ċ) = I (d0(t))g−1 ·
g(t) + J (ḋ0) = Π (t),

• the equation of motion reads

i∗d0(t)

(
d
dt

J (
·
c)

)
= i∗d0(t)

[
d
dt

(
I (d0(t))g

−1ġ(t) + J (
·

d0)

)]
= 0, (26)

• the constraint equation in a non-holonomic gauge stays as

g−1ġ(t) ∈ gdNH
0 (t)

= gc(t).

By Eq. (17), the constraint equation in terms of J (
·
c) reads

I −1(dNH
0 (t))(J (

·
c) − J (

·

dNH
0 )) =

(
i∗
dNH

0
◦ I (dNH

0 ) ◦ idNH
0

)−1 (
i∗
dNH

0
J (

·
c)
)

∈ gdNH
0 (t). (27)

Remark 3.5 (Base of the gD Bundle). Since gg·q
= gq for abelian G, the vector bundle gD

−→ Q descends
to a vector bundle over the shape space gD

−→ Q/G. In this context, the objects i∗c(t) = i∗d0(t)
= i∗c̃(t) and

I (c(t)) = I (d0(t)) = I (c̃(t)) really depend on the base curve c̃(t) ∈ Q/G.

Now, we want to re-write the equation of motion for the momentum J (ċ) in a usual first-order differential form.
As in Section 2.4.2, consider a linear isomorphism Tt : g∗ ∼

−→ g∗ taking the initial fiber (gdNH
0 (t1))∗ to (gdNH

0 (t))∗,

i∗
dNH

0 (t)
◦ Tt = Tt ◦ i∗

dNH
0 (t1)

.

Eq. (26) becomes

d
dt

(
i∗
dNH

0 (t)
J (

·
c)
)

= [
·

T T −1, i∗
dNH

0 (t)
]

(
J (

·
c)
)

, (28)

which is equivalent to the corresponding expressions in terms of moving basis of [2]. The above equation states

how the non-triviality of the bundle
(
gD
)∗

affects the evolution of the projected momentum i∗
dNH

0 (t)
J (

·
c). Note that

even when the bundle gD is trivializable, but not directly trivial, the corresponding equation of motion also contains

non-zero
·

T T −1 term.

Remark 3.6 (Trivial gD
I Bundle). When gD

I it is directly trivial, the above equation reads

d
dt

(
i∗
dNH

0 (t)
J (

·
c)
)

= 0

so it gives a conservation law related to the given base curve c̃(t).
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More explicitly, let {ei
dNH

0 (t)
}
dim gdNH

0 (t)

i=1 be a (moving) basis for the fiber gdNH
0 (t) along the gauge curve dNH

0 (t). Then,

constraints (28) for J (
·
c) imply that

J (
·
c) =

dim gdNH
0 (t)∑

i=1

λi (t) I (dNH
0 (t))ei

dNH
0 (t)

+ J (

·

dNH
0 ) (29)

for some time-dependent coefficients λi (t) ∈ R to be determined. From (26), we have that the λi (t)’s must satisfy

A(t)

·
−→

λ (t) = −B(t)
−→

λ (t) −
−→
c (t)

where the time-dependent real (dim gdNH
0 (t)

× dim gdNH
0 (t)) matrices A(t) and B(t) are defined by

Ai j (t) =

〈
I (dNH

0 (t))ei
dNH

0 (t)
, e j

dNH
0 (t)

〉
=: I

{ek
dNH
0 (t)

}

i j

Bi j (t) =

〈
d
dt

(
I (dNH

0 (t))e j
dNH

0 (t)

)
, ei

dNH
0 (t)

〉
and the dim gdNH

0 (t) real vector
−→
c (t) by

c j (t) =

〈
d
dt

J (

·

dNH
0 ), e j

dNH
0 (t)

〉
.

Note that A is symmetric and invertible. If we solved these equations for J (
·
c)(t), then the reconstruction of g(t)

from it is straightforward because, since G is abelian, we can make use of the exponential map exp : g −→ G. This
yields

g(t) = exp
(∫ t

t1
ds I (dNH

0 )−1
(

J (
·
c)(s) − J (

·

dNH
0 )(s)

))
= exp

(∫ t

t1
ds
(

i∗
dNH

0
◦ I (dNH

0 ) ◦ idNH
0

)−1

(s)

(
i∗
dNH

0 (s)
J (

·
c)(s)

))
. (30)

Remark 3.7 (Mechanical Connection Phase Formula). As G is abelian, the above expression yields

c(t) = exp
(∫ t

t1
ds I (d0)

−1
(s) J (

·
c)(s)

)
· gMech(t) · d0(t1)

with

gMech(t) = exp
(

−

∫ t

t1
ds I (dNH

0 )−1 J (

·

dNH
0 )(s)

)
such that gMech(t) · dNH

0 (t) = HorMech(c̃)(t) gives the horizontal lift of c̃(t) ∈ B with respect to the mechanical

connection (18) (see also Section 4.1). Notice that the equation of motion for J (
·
c) (but not the constraint equation6)

is the same in any gauge d0(t).

Finally, to better understand how the geometry of the bundle gD enters the equations of motion for J (
·
c), we restrict

ourselves to the interesting case in which the horizontal space with respect to the non-holonomic connection is (kinetic
energy metric) orthogonal to the whole vertical subspace T OrbG within T Q. In this case, a mechanical gauge d0(t),

6 For a general non non-holonomic gauge, constraint equation becomes the gauge covariant equation (8).
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for which J (ḋ0) = 0, is also a non-holonomic one and Eq. (26) yields the parallel transport equation:

D ·

d0

−→
p ≡

d
dt

pi
−

dim gd0(t)∑
j=1

γ i
j p j

= 0, ∀ 1 ≤ i ≤ dim gd0(t) (31)

for

pi (t) :=

〈
J (

·
c), ei

d0(t)

〉
=

dim gd0(t)∑
j=1

λ j (t)
〈
I (d0(t))e

j
d0(t)

, ei
d0(t)

〉
being the coordinates of J (

·
c) in a basis of g∗ dual to a basis {ek

d0(t)
}
dim g
1 for which〈

I (d0(t))e
i
d0(t)

, eí
d0(t)

〉
= 0 ∀ 1 ≤ i ≤ dim gd0(t), dim gd0(t) + 1 ≤ í ≤ dim g. (32)

Note that, above, for dim gd0(t) + 1 ≤ í ≤ dim g then pí
= 0 by the orthogonality condition (32) and because (iff) the

constraints (29) are fulfilled. The linear connection coefficients γ i
k are defined by

D
(

·

d0)
ei

d0(t)
:=

d
dt

ei
d0(t)

=

dim g∑
k=1

γ i
k ek

d0(t)
.

Consequently, for this case, the time evolution of J (
·
c) is geometrically determined: it moves parallel-transported

along the base curve c̃(t) ∈ Q/G in the bundle gD
−→ Q/G of Remark 3.5 (see also [2]). On the other hand, as

noticed in Remark 3.6, when the involved geometry is trivial, i.e. gD
= Q × V with constant V ⊂ g, then i∗V J (

·
c)

is a conserved quantity. Indeed, since g is abelian, such a V defines a subalgebra and we are in the case described in
Section 4.4.

In Section 5.1, we apply these general considerations to study the motion of a base-controlled vertical rotating
disk.

3.4. The trivial bundle case Q = G × B

To illustrate on how the controlled base variables induce motion on the group variables, we now focus on the case
in which Q = G × B, i.e., Q −→ Q/G is a trivial principal G- bundle. Recall that we are considering the natural left
G-action on G × B. In this case,

T Q = T G ⊕ T B

and thus, by hypothesis (H1) of Section 2.1,

D(b,g) = Tb B ⊕ S(b,g)

with S(b,g) := TgG ∩ D(b,g) as usual. Note that, since D is G-invariant, for each b ∈ B, S(b,g) defines a G-invariant
distribution on G which, in turn, is fixed by the subspace S(b,e) ⊂ TeG = g. So D is characterized by a smooth map
B −→ Grdim S(g) := {Grassmanian of dim S subspaces of g} or, equivalently, by a vector bundle

V = ∪
b∈B

S(b,e) −→ B. (33)

Conversely, if V −→ B is a vector bundle over the base B with fibers Vb ⊂ g, it defines a G-invariant distribution
D on G × B by setting S(b,g) = Lg∗eVb. The vector bundle S ⊂ D thus corresponds to the map

G × B −→ Grdim S(g)

(b, g) 7−→ Lg∗eVb.

Now, the subspace (recall Proposition 2.7) g(b,g) is given by

g(b,g)
= {X ∈ g, ∃Y ∈ S(b,e); X = AdgY }
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so,

g(b,g)
= Adg g(b,e)

g(b,e)
= S(b,e).

At this point, we make an assumption on the metric on Q = G × B:

(H M) Suppose that we have a smooth map

B −→ {Left invariant metrics on G} ' {metrics on g}

b 7→ (, )b .

The metric k Q(, ) on Q is assumed to be given by

k Q
(b,g)

((
·

b1,
·
g1

)
,
(

·

b2,
·
g2

))
= k B

b (
·

b1,
·

b2) + (g−1
1

·
g1, g−1

2

·
g2)b

for k B(, ) being a metric on B.

Remark 3.8 (Applicability). This kind of metric on Q = G × B is the one present on typical examples (see [2]). See
also the examples of Section 5.

Assuming (H M), the momentum map J : T Q −→ g∗ corresponding to the left G-action on Q is

J (
·

b,
·
g) = Ad∗

gΨb(g
−1 ·

g)

with Ψb : g −→ g∗ denoting the isomorphism defined by the metric (, )b on g. The inertia tensor I(b,g) : g −→ g∗

takes the form

I(b,g) = Ad∗
g ◦ Ψb ◦ Adg−1 .

Note that we have a natural lift dNH
0 (t) = (c̃(t), e) ∈ B × G for a curve c̃(t) ∈ B. This gauge dNH

0 (t) defines a
non-holonomic gauge as defined in Section 2.4.3. In fact, this dNH

0 (t) coincides with the horizontal lift of c̃(t) from
(c̃(t1), e) with respect to the non-holonomic connection of [2]. Moreover, it is also a mechanical gauge (18).

For this gauge choice, the inclusion

idNH
0 (t) : gdNH

0 (t)
= S(c̃(t),e) ↪→ g

depends only on the base curve c̃(t) ∈ B and coincides with the inclusion

ic̃(t) : Vc̃(t) ↪→ g

where Vc̃(t) = S(c̃(t),e) is the fiber of the vector bundle (33). The curve c(t) describing the motion on the constrained
and controlled system on Q will thus be

c(t) = (c̃(t), g(t)) = g(t) · dNH
0 (t)

and

J (
·
c) = Ad∗

g I(c̃,e)(g
−1 ·

g) = Ad∗
gΨc̃(t)(g

−1 ·
g).

In this case, equations of motion (11) read

i∗c(t)

(
d
dt

J (
·
c)

)
= 0

or, equivalently,

i∗c̃(t)

(
d
dt

(
Ψc̃(t)(g

−1 ·
g)
)

+ ad∗

g−1
·
g
Ψc̃(t)(g

−1 ·
g)

)
= 0. (34)
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The constraints for g(t) are

g−1 ·
g(t) ∈ g(c̃(t),e)

= S(c̃(t),e) = Vc̃(t). (35)

Eq. (34) can be re-written using a moving basis system on the vector bundle V −→ B as done in the previous section,
yielding the local expression of the non-holonomic momentum equations of [2] evaluated along c̃(t).

Let us simplify the situation a bit more to try to isolate the Lie-algebraic (vertical) contribution to the system’s
motion from the gD-geometric (horizontal) contribution studied in the previous section. In case the bundle V −→ B
is trivial, that is S(b,e) = S0 ⊂ g for all b ∈ B, then

i∗c̃(t) = i∗0 ∀t

and so Eq. (34) reads

d
dt

(
i∗0Ψc̃(t)(g

−1 ·
g)
)

= −i∗0

(
ad∗

g−1
·
g
Ψc̃(t)(g

−1 ·
g)

)
which is an equation for Ψc̃(t)(g−1 ·

g), coupled to the constraint equation (35) for g−1 ·
g. Its algebraic structure is still

hard to handle in general. If we wanted to solve the above (general) equation by using usual Lie-algebraic properties of
g, then we would need to assume some additional condition on how the subspace S0 changes when moving vertically
along the fiber (c̃(t), e) (c̃(t), g).

Suppose, then, that S0 is AdG invariant. It follows that gc(t)
= gc̃(t)

= S0 and that S0 ⊂ g is a Lie subalgebra. By

the constraints g−1 ·
g ∈ S0 and the equation of motion (11) becomes the conservation law (as in Remark 3.6)

d
dt

(
i∗0 J (ċ)

)
= 0

d
dt

(
i∗0Ψc̃(t)(g

−1 ·
g)
)

= −

(
ad∗

g−1
·
g
i∗0Ψc̃(t)(g

−1 ·
g)

)
.

Although looking integrable, this equation is still hard to solve explicitly in general (see [7] for the rigid body
g = so(3) case). Nevertheless, in this situation, the dynamical factor g(t) of c(t) can be reconstructed from a solution
of the above equation in S0 yielding corresponding phase formulas, as described in Section 4 and Appendix B.

From the analysis of this section, we see that even under very favorable hypothesis on the geometry of Q and
D, the equations of motion can be very complicated and we cannot continue with the general study of c(t) (recall
Remark 3.3). Nevertheless, if we require deeper compatibilities (as above) between D and the G-action, e.g. horizontal
symmetries, in Sections 4.4 and 4.5 we shall show that further phase formulas can be given for characterizing the
solution c(t).

4. Reconstruction and phases

In the following, we focus on reconstruction phases [6] for both the full solution c(t) and vertical (gauge-dependent)
unknown g(t). The interested reader can find various types of reconstruction phases in [8].

4.1. Gauges and phases in Q −→ Q/G for D-constrained systems

Suppose that the base curve c̃(t) ∈ Q/G is closed, c̃(t1) = c̃(t2). Choice (17) for the non-holonomic gauge dNH
0 (t)

provides us with a geometric phase in the motion of the system in Q as follows. Being defined as a horizontal lift,
dNH

0 (t2) coincides with the holonomy of the associated to the base curve c̃(t) measured from the initial condition
dNH

0 (t1) = c(t1) and with respect to the non-holonomic connection. Thus, the corresponding phase formula is

c(t2) = gDyn(t2) · gN H · dNH
0 (t1)

with gN H uniquely defined by dNH
0 (t2) = gN H · dNH

0 (t1) and where gDyn(t) is the solution of Eqs. (12) and (16), with

ξ(t) = g−1
Dyn

·
gDyn and time-dependent coefficients evaluated along this gauge dNH

0 (t).
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Another geometric phase gM P appears when using the mechanical gauge. Let the gauge dNH
0 (t) be as above and

gMech(t) be defined by requiring d̃0(t) := gMech(t) · dNH
0 (t) to be the horizontal lift with respect to the mechanical

connection (18) (see [9]) on Q with gMech(t1) = e. If we write gDyn(t) = gD̃(t)·gMech(t), the corresponding equations
of motion for the remaining dynamic contribution gD̃(t) are

i∗
d̃0(t)

(
d
dt

(
I (d̃0(t))g

−1
D̃

·
g

D̃

)
+ ad∗

g−1
D̃

·
g

D̃

I (d̃0(t))g
−1
D̃

·
g

D̃

)
= 0 (36)

which are simpler from the original ones (12) because the J ( d
dt (d̃0)) term vanishes by (18). But the constraint

equations (16) in terms of gD̃ read

g−1
D̃

·
g

D̃ +
·
gMechg−1

Mech ∈ gd̃0(t) (37)

which are more complicated than the original ones for gDyn.
The relation between the above different gauge phases read

c(t2) = gDyn(t2) · gN H · c(t1)

= gD̃(t2) · gMech(t2) · gN H · c(t1)

= gD̃(t2) · gM P · c(t1).

with the second geometric phase being gM P = gMech(t2) · gN H .

Remark 4.1 (Simplifications from Different Gauges). In the non-holonomic gauge, the constraint equations are
simpler and, in turn, in the mechanical gauge the equations of motion become simpler. One would like to have both
simplifications to hold, but this cannot be achieved in general since the horizontal lift with respect to the mechanical
connection is not horizontal with respect to the non-holonomic connection for general D. Finally, we would like to
observe that, in some situations, we have additional information about the D-constraints and the non-holonomic gauge
becomes preferable (see, for example, the next sections).

4.2. Reconstruction phases for systems with conserved momentum

Now, we shall elaborate on the reconstruction of g(t) for a solution Π (t) in Oµ ⊂ g∗, as described in Section 3.1
in case there are no D-constraints. A concrete example of the phase formulas we obtain below can be found in [3] for
the motion of a self-deforming body.

Suppose that we have a solution Π (t) = Ad∗

g−1(t)
J (ċ) ∈ Oµ for Eq. (22) with µ = J (ċ) = const 6= 0 and that we

chose a linear projector P : g� gµ satisfying

Adh ◦ P = P ◦ Adh . (38)

From Appendix B, we know that we can then write

g(t) = hD(t) · gG(t)

with the geometric phase gG being the horizontal lift of Π (t) with respect to connection defined by P in the Gµ-
bundle G −→ Oµ and the dynamic phase hD ∈ Gµ defined by

d
dt

hDh−1
D (t) = P

(
I −1
c(t)(J (ċ) − Ad∗

g J0(t))
)

(39)

with hD(t1) = e. The last step follows from Eq. (21) for g(t) where Ic(t) denotes the inertia tensor evaluated along
the physical motion c(t).

Suppose now that g has an Ad-invariant scalar product (, ), as considered in Appendix B. Let u1 =
Ψ (µ)

‖Ψ (µ)‖
and

{ui }
dim gµ

i=1 denote an orthonormal basis with respect to (, ) of the vector subspace gµ ⊂ g. In this case, Eq. (39)
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becomes

d
dt

hDh−1
D (t) =

1

‖Ψ(µ)‖2 (2K (ċ(t)) − 2Kint(t) + 〈J0(t), I −1
0 (t)J0(t)〉 − 〈J0(t), I −1

0 (t)Π (t)〉)Ψ(µ)

+

dim gµ∑
i=2

[
(ui , I −1

c(t)µ) − (ui , I −1
c(t) Ad∗

g J0(t))
]

ui (40)

where K represents the kinetic energy of the controlled system in Q (see Appendix A). When d0(t) = dMec
0 (t) is the

mechanical gauge (18),

d
dt

hDh−1
D (t) =

1

‖Ψ(µ)‖2 (2K (ċ(t)) − 2Kint(t))Ψ(µ) +

dim gµ∑
i=2

(ui , I −1
c(t)µ)ui . (41)

Remark 4.2 (Locked Inertia Tensor and Physical Information in h D). The above reconstruction phase formula, in the
mechanical gauge, relates the dynamical phase hD to the data of the locked inertia tensor Ic(t) and the kinetic energy
K , both along the physical solution curve c(t) in Q, and to the gauge kinetic energy Kint(ḋMec

0 ).

Remark 4.3 (The Case J (ċ) = 0). In this case, the system’s motion c(t) coincides with the mechanical gauge
dMech

0 (t) motion because of (18). We thus say that the induced motion c(t) is geometrical with respect to the base one
c̃(t) (see also Example 4.6).

Remark 4.4 (The Case G Abelian). In this case, Ic(t) = IdMec
0 (t) and, thus, the only dynamical (i.e. non-kinematical)

information needed to evaluate formula (41) is the system’s kinetic energy evolution K (ċ(t)). In this case, hD(t) can
also be easily integrated by means of the corresponding exponential map exp : gµ −→ Gµ.

4.3. Phases for D-constrained, purely kinematical systems

We recall from [2],

Definition. A constrained system (Q, L , G, D) is said to have purely kinematical (PK) constraints if T Q = Ver⊕ D.

Since D is G-invariant, it defines a principal connection on Q −→ Q/G. Let AD denote the corresponding g-
valued 1-form on Q. The constraint equation for c(t) then reads

AD(
·
c) = 0

and the vertical equations of motion (12) are trivial since gq
= 0 for all q. So we have that

Proposition 4.5. The motion for a base-controlled system (Q, L , G, D, c̃) for which D defines purely kinematical PK
constraints, is of geometric nature with respect to c̃. In other words, the solution c(t) is given by the horizontal lift
of the base-controlled curve c̃(t) with respect to the principal connection on Q −→ Q/G defined by the constraint
distribution D.

Corollary. If c̃ is closed in [t1, t2], we then have a geometric phase gG in the system’s dynamics associated to the
initial value c(t1) and defined by gG = Hol(c̃):

c(t2) = gG · c(t1).

Example 4.6 (Deforming Bodies with Zero Angular Momentum). If we regard J (ċ) = 0 as a D-constraint for the
motion of a self deforming body, with J being the angular momentum map, then D coincides with the mechanical
connection’s horizontal space. From the above proposition, we recover the known fact [11] that global reorientation
g(t) ∈ SO(3) of such a body is geometrical with respect to the deformation c̃(t).
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4.4. Phases for D-constrained systems with horizontal symmetries

We now analyze a geometric-kinematical favorable case leading to phase formulas for the dynamical factor g(t) of
c(t).

Definition ([2]). A constrained system (Q, L , G, D) is said to have (full) horizontal symmetries (HS) if there exists
a subgroup H ⊂ G such that

(1) ξQ(q) ∈ Dq∀q ∈ Q when ξ ∈ h := Lie(H) ⊂ g,
(2) (Full condition) Sq := Dq ∩ Tq (OrbG(q)) = Tq (OrbH (q)) ∀q ∈ Q.

Condition (2) above states that horizontal symmetries exhaust the whole vertical kinematics. The analysis we give
below can be extended to the non-full case, i.e. by assuming only (1), but we keep hypothesis (2) for simplicity.
Example 5.3 below illustrates the non-full case.

For an HS system, the bundle gD is the trivial one Q × h. Since the inclusion map iq = ih : h = gq ↪→ g becomes
independent of the point q , Eq. (11) reads

i∗h

(
d
dt

(J (
·
c))

)
=

d
dt

(i∗h J (
·
c)) = 0. (42)

Consequently, i∗h J (
·
c) gives a conserved quantity during the motion of the system as at the end of Section 3.4. This

projection i∗h J (
·
c) can be interpreted as the part of the total momentum map which is compatible with the constraints

(see also [2]).
Next, we shall enunciate a few results which follow from the definition of a system with full HS.

Proposition 4.7. The following holds:

• H ⊂ G is a normal subgroup of G, thus h is G-invariant Adgh = h,
• ih Adg = Adg ih,

• For each q ∈ Q, let I h
q = i∗h ◦ Iq ◦ ih : h −→ h∗ be the restricted inertia tensor, then

I h
g·q = Ad∗

g I h
q Adg−1 , ∀g ∈ H.

We shall now describe the appearance of phase formulas for the dynamical factor g(t) of the motion c(t) of an HS

system. First, recall that in a non-holonomic gauge dNH
0 (t) the constraint equation for the body velocity ξ = g−1 ·

g
becomes Eq. (16) which, for an HS system, reduces to

g−1 ·
g(t) ∈ h (43)

for all t . From the other side, if we consider the non-holonomic body momentum Π (t) ∈ g∗ of Eq. (5), because of the
constraint (43), we have that

g−1 ·
g(t) = ξ(t) = (I h

0 )−1
(t)

(
i∗hΠ (t) − i∗h J (ḋNH

0 (t))
)

. (44)

Thus, Eq. (12), equiv. Eq. (42), become

d
dt

(i∗hΠ (t)) = −ad∗

g−1
·
g(t)

(i∗hΠ (t)) = −ad∗

(Ih
0 )−1

(t) (i∗hΠ (t)−i∗h J (ḋNH
0 (t)))

i∗hΠ (t). (45)

The above expressions are equivalent to

i∗hΠ (t) = Ad∗

g−1(i
∗

h J (
·
c)) (46)

because

i∗h J (
·
c) = i∗h Ad∗

g (Π (t)) = Ad∗
g (i∗hΠ (t)),
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by Proposition 4.7. The constraint equation (43) can be also put in terms of Π (t) as follows

I −1
0 (t)(Π (t) − J (

·

dNH
0 (t))) = (I h

0 )−1
(t)

(
i∗hΠ (t) − i∗h J (ḋNH

0 (t))
)

∈ h. (47)

Eqs. (45) and (47), both determine the dynamics of Π (t) ∈ g∗ from the initial value Π (t1) = J (
·
c) = µ.

Now, from (43) and g(t1) = e it follows that g(t) ∈ H for all t ∈ [t1, t2]. Thus, from Eq. (46), we can deduce that

i∗hΠ (t) ∈ O H
i∗h J (

·
c)

where O H
i∗h J (

·
c)

denotes the H -coadjoint orbit in h∗ through the constant element i∗h J (
·
c). We are then in the situation

described in Appendix B (but with group H instead of G) and we can thus apply the usual reconstruction procedure
of [6] for the group unknown g(t) ∈ H from a solution i∗hΠ (t) ∈ O H

i∗h J (
·
c)

.

Remark 4.8 (Initial Conditions). When the initial conditions are g(0) 6= e in G, so c(0) = g(0)·dNH
0 (0), then Eq. (43)

implies that g(t) = g(0) · gH (t) where gH (t) ∈ H is the solution corresponding to the initial condition gH (0) = e.
Thus, below we shall focus on the g(0) = e case.

Let P : h −→ h
i∗h J (

·
c)

= Lie(H
i∗h J (

·
c)

) be a linear projector s.t. P ◦ Adg = Adg ◦ P for all g ∈ H . Following

Appendix B,

Proposition 4.9. Keeping the notations introduced above, let Π (t) ∈ g∗ be a solution7 of Eqs. 45, 47 and i∗hΠ (t)
its projection onto h∗. Then, the corresponding solution g(t) of the reconstruction equation (44) which satisfies the
constraints (43) with g(0) = e is such that g(t) ∈ H ∀t ∈ I and

g(t) = hD(t) gG(t).

Above, the geometric phase gG(t) is the horizontal lift of i∗hΠ (t) ∈ O H
i∗h J (

·
c)

from gG(0) = e with respect to the

P-induced principal connection AP on the principal H
i∗h J (

·
c)

-bundle H
π

−→ O H
i∗h J (

·
c)

and the dynamic phase hD(t) ∈

H
i∗h J (

·
c)

is defined by the equation

d
dt

hDh−1
D (t) = AP

(
d
dt

g

)
g

= P
(

Adg(t)(I h
0 )−1

(t) (i
∗

hΠ (t) − i∗h J (ḋNH
0 (t)))

)
= P

(
(I h

c(t))
−1
(

i∗h J (ċ) − Ad∗

g(t)i
∗

h J (ḋNH
0 (t))

))
hD(0) = e.

(48)

Remark 4.10 (Physical Content of hD). The above dynamical phase hD depends on the (restricted) inertia tensor I h
c(t)

and on the gauge internal momentum Ad∗

g(t)i
∗

h J (ḋNH
0 (t)), both as seen from the reference system which is moving

along the physical evolution c(t) ∈ Q. Moreover, if the non-holonomic gauge choice is the horizontal one (17), then

d
dt

hDh−1
D (t) = P

(
(I h

c(t))
−1i∗h J (ċ)

)
only depends on I h

c(t).

7 The problem of characterizing the geometry of the reduced solutions i∗hΠ (t) ∈ O H

i∗h J (
·
c)

of Eq. (45) corresponds to the dynamical one described

in Remark 3.3.
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Remark 4.11 (The Case i∗h J (
·
c) = 0). In this case, g(t) coincides with the dynamical phase and is given by

g−1 ·
g(t) = −(I h

dNH
0 (t)

)−1i∗h J (ḋNH
0 (t))

since i∗hΠ (t) = 0 by (46). Nevertheless, the full motion c(t) is geometric with respect to the base one c̃(t). The reason

is that c(t) coincides with the horizontal lift dNH
0 of c̃ with respect to the non-holonomic connection [2] because of

equation (17). Notice that this is true for full horizontal symmetries, i.e., when the conservation of i∗h J = 0 exhausts the
whole vertical equations of motion. This result generalizes the one of [11] (see Example 4.6) on the geometric nature
of base-induced motion for zero momentum systems to the context of D-constrained systems with full horizontal
symmetries.

When h admits an Ad-invariant inner product, the dynamic phase equation can be also related to other mechanical
magnitudes.

Proposition 4.12. Keeping the notations introduced above, suppose that h is endowed with an Ad-invariant inner
product (, ) inducing the isomorphism Ψ : h∗

−→ h and let P : h −→ h
i∗h J (

·
c)

be the orthogonal projector onto

h
i∗h J (

·
c)

. Let {ui } be an orthonormal basis for h
i∗h J (

·
c)

with u1 =
Ψ (i∗h J (

·
c))∥∥∥Ψ (i∗h J (
·
c))
∥∥∥ . Also, let the non-holonomic gauge dNH

0

be defined by the horizontal lift (17). Then, the corresponding dynamic phase equation becomes

d
dt

hDh−1
D (t) =

(
2K

(
d
dt

c(t)

)
− 2Kint(t)

) Ψ(i∗h J (
·
c))∥∥∥Ψ(i∗h J (
·
c))
∥∥∥2 +

dim h
i∗
h

J (
·
c)∑

i=2

(ui , (I h
c(t))

−1(i∗h J (ċ)))ui

hD(t1) = e.

In the above expression for the dynamic phase, (Kint) K denotes the (gauge-internal) kinetic energy of the
controlled system in Q (see Appendix A). The above formula relates these physical quantities, which are directly
involved in the system’s dynamics, to the phases appearing during the full H -horizontally symmetric motion (see
Corollary bellow).

Corollary. Finally, if the solution Π (t) ∈ g∗ is such that i∗hΠ (t1) = i∗hΠ (t2) then:

• gG(t2) is the holonomy of the base path i∗hΠ (t) in the H
i∗h J (

·
c)

-bundle H
π

−→ O H
i∗h J (

·
c)

with respect to the connection

defined by P measured from gG(t1) = e.
• the solution for the constrained and controlled system c(t) ∈ Q satisfies the following phase relation at time t2:

c(t2) = hD(t2)gG(t2) · dNH
0 (t2)

where dNH
0 (t2) is the horizontal lift of c̃(t) with respect to the non-holonomic connection [2], starting from

d0(t1) = c(t1).
• when, in addition, the base curve c̃(t) ∈ Q/G is closed for t ∈ [t1, t2], so c̃(t1) = c̃(t2), then d0(t2) = gNH

G · d0(t1)
where gNH

G is the holonomy of the base path c̃ with respect to the non-holonomic connection in the bundle
Q −→ Q/G measured from the initial condition d0(t1) = c(t1). So, in this case,

c(t2) = hD(t2)gG(t2) · gNH
G · c(t1) .

4.5. Phases for systems with dipolar-magnetic-torque type of affine constraints

An interesting special case of affine-constrained systems which do not satisfy hypothesis (ii) of Section 3.2 but
present reconstruction phase formulas is the following.
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(ii′) The affine constraints are of external dipolar-magnetic-torque form, this is,

AMech
q(t) (q̇(t)) = I −1

q(t) Ad∗

hM (t) L̂0

for AMech denoting the mechanical connection (see [9]). Equivalently, the affine constraint can be put in the form

J (q̇(t)) = Ad∗

hM (t) L̂0

for some given curve hM (t) ∈ G, with hM (t1) = e and the initial momentum value L̂0 6= 0 ∈ g∗.

The time derivative of the above equation is equivalent to the following non-conservation of momentum equation

d
dt

J (q̇(t)) = ad∗

ḣM h−1
M

J (q̇(t))

where the right-hand side represents a generalized torque of a very special kind. In Section 5.4, we shall study the
motion of a body with dipolar magnetic moment in an external magnetic field which can be described as a system
with affine constraints of type (ií) above. This justifies our terminology.

So we now assume (ií) to hold and that we have a base-controlled curve c̃(t). Next, we choose the mechanical
gauge dMec

0 (t) (18) because D for the above connection form AMech
q(t) is exactly the horizontal space with respect to

the mechanical connection. Since constraints represent dim G equations, they fully characterize the dynamics of the
group unknown g(t) in c(t) = g(t) · dMec

0 (t). Indeed, D defines a principal connection, thus equations of motion (12)
are trivial. These constraint equations in (ií) can be written as

Ad∗

h−1
M (t)

Ad∗

g(t) IdMec
0 (t)

(
g−1ġ

)
= L̂0 = const.

From this, we see that if we call RM (t) := h−1
M (t)g(t) ∈ G and Π (t) := IdMec

0 (t)(g
−1ġ), then

Ad∗

RM (t)Π (t) = L̂0 (49)

so Π (t) ∈ OL0 ⊂ g∗, the coadjoint orbit through L̂0, for all t . The corresponding equation giving the dynamics of
Π (t) is

d
dt

Π (t) = −ad∗

R−1
M

·

RM

Π (t) = −ad∗

(I −1
dMec
0 (t)

Π (t)−Adg−1 ḣM h−1
M )

Π (t).

Note that this equation is coupled to the one that defines Π (t) from g(t). Nevertheless, Eq. (49) implies that we are
in the situation described in Appendix B and we can thus apply the reconstruction procedure [6] on the principal
G L̂0

-bundle G ' L−1(L̂0) −→ OL̂0
to obtain RM (t) from a solution Π (t) ∈ OL̂0

. This yields the phase formula

RM (t) = RDyn
M (t)RGeom

M (t) where the dynamic phase RDyn
M (t) lies in G L̂0

and RGeom
M (t) is a horizontal lift of Π (t)

with respect to some chosen P-connection AP in the G L̂0
-bundle L−1(L̂0) ' G −→ OL̂0

. In this case, the dynamic
phase equation, when put in terms of the original g(t), reads

d
dt

RDyn
M RDyn −1

M (t) = AP

(
d
dt

RM (t)

)
g

(50)

= P
(

Adh−1
M

(
I −1
c(t) J (ċ)(t) − ḣM h−1

M

))
(51)

RDyn
M (t1) = id. (52)

In Section 5.4, we shall work out the details of the above reconstruction formula in the magnetic dipole example.
Finally, if Π (t1) = Π (t2) we then have a phase formula which fully characterizes the motion of the system

c(t) ∈ Q at time t2:

c(t2) = hM (t2) · RDyn
M (t2) · HolP

Π (t1,2)
· dMec

0 (t2)

where HolP
Π (t1,2)

is the holonomy of the curve Π (t) with respect to the P-connection in the bundle L−1(L̂0) ' G −→

OL̂0
measured from the initial value e ∈ G.
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5. Examples

Here we illustrate our general considerations on simple examples of base-controlled, D-constrained systems.
Examples of shape-controlled self deforming bodies with conserved angular momentum can be found in [3].

5.1. Vertical rotating disk

We consider the vertical rotating disk example from [2]. This gives an example of the systems considered in
Section 3.3. In this case, Q = R2

× S1
× S1

3 q = (x, y, θ, ϕ) and we consider G = R2
× S1

3 g = (x, y, θ)

(left) acting on itself. The Lagrangian reads

L(ẋ, ẏ, θ̇ , ϕ̇) =
1
2

m

(
·
x

2
+

·
y

2
)

+
1
2

I
·

θ
2
+

1
2

J
·
ϕ

2

and the non-holonomic constraints (non-sliding) are given by

·
x = R cos ϕ

·

θ
·
y = R sin ϕ

·

θ

where R is the radius of the disk. In this case, the base-controlled curve is c̃(t) = ϕ(t), which represents the orientation
of the vertical plane containing the disk, and

dNH
0 (t) = (x0, y0, θ0, ϕ(t))

gives a non-holonomic gauge (which, in this example, also coincides with the mechanical gauge). Also,

gq
= span{(R cos ϕ, R sin ϕ, 1) ∈ Lie(G) = R2

⊕ s(1)}

and

J (
·
c) = (m

·
x, m

·
y, I

·

θ).

From Section 3.3, the constraint equation in terms of J (
·
c) for this non-holonomic gauge reads I −1

0 J (
·
c) ∈ gq , or,

J (
·
c) = λ(t)(m R cos ϕ(t), m R sin ϕ(t), I )

for some λ(t) ∈ R to be determined by the corresponding equation of motion (26) for J (
·
c):〈

i∗d0(t)

(
d
dt

J (
·
c)

)
, (R cos ϕ, R sin ϕ, 1)

〉
= 0

·

λ(m R2
+ I ) + λ

[
d
dt

(m R cos ϕ, m R sin ϕ, I )

]
· (R cos ϕ, R sin ϕ, 1) = 0.

Note that the second term in the last equation is zero because the two vectors are orthogonal. Then, since λ(t) =
·

θ by

the definition of the momentum J (
·
c), we have

·

λ(m R2
+ I ) =

··

θ(m R2
+ I ) = 0

which is the vertical equation of motion derived in [2]. The above conservation law can be directly computed via
equation (31) since γ 1

1 = 0 (the underlying linear connection in the 1-dimensional bundle gD
−→ Q/G = S1 is flat,

see Section 3.3). Consequently,
·

θ is constant. Finally, since we have solved for J (
·
c) using the equation of motion and

of constraints, we can apply formula (30) obtaining

g(t) =

(
·

θ m R

(∫ t

t1
ds cos ϕ(s)

)
,

·

θ m R

(∫ t

t1
ds cos ϕ(s)

)
, I

·

θ(t − t1)

)
.
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Note that gMech(t) = (0, 0, 0) in this case. At last, the full solution c(t) ∈ Q is

c(t) = g(t) · d0(t)

=

(
·

θ m R

(∫ t

t1
ds cos ϕ(s)

)
,

·

θ m R

(∫ t

t1
ds cos ϕ(s)

)
, I

·

θ(t − t1)

)
· (x0, y0, θ0, ϕ(t))

=

(
·

θ m R

(∫ t

t1
ds cos ϕ(s)

)
+ x0,

·

θ m R

(∫ t

t1
ds cos ϕ(s)

)
+ y0, I

·

θ(t − t1) + θ0, ϕ(t)

)
from which we clearly see that motion is induced on the group variables from the base-controlled curve ϕ(t) due to
the presence of the non-sliding non-holonomic (D-)constraints.

5.2. Ball on a rotating turntable

We also recall the setting for describing a ball on a rotating turntable from [2]. This is an example of the systems
considered in Sections 3.2 and 3.4. The corresponding Lagrangian on Q = R2

× SO(3) is

L =
1
2

m(ẋ2
+ ẏ2) +

1
2

mk2(ω2
x + ω2

y + ω2
z ),

and the non-sliding affine D-constraints for the ball motion are

−ẋ + aωy = Ω y

ẏ + aωx = Ωx

where (x, y) ∈ R2 denote the ball’s position and ġ = ωxξ
R
x (g) + ωyξ

R
y (g) + ωzξ

R
z (g) the angular velocity of

g(t) ∈ SO(3) representing the ball’s rotation around its center. Here, ξ R
i (g) denotes the right invariant vector in

Tg SO(3) whose value at e is ξi ∈ so(3), the generator of rotations about the i-axis. Also above, a is the ball’s radius,
mk2 its (any) principal moment of inertia and Ω the given angular velocity of the rotating turntable. To take these
equations to the form of Eq. (23) we define

AD
(x,y,g)(ẋ, ẏ, ġ) =

(
(ẋ, ẏ, ġ), v4

q

) v4
q

‖v4
q‖2 +

(
(ẋ, ẏ, ġ), v5

q

) v5
q

‖v5
q‖2

γ (x, y, g) = Ω y
v4

q

‖v4
q‖2 + Ωx

v5
q

‖v5
q‖2

where (, ) = (, )R2 + (, )so(3) denotes the kinetic energy inner product on Q = R2
× G with G = SO(3) and

v4
q = −

∂
∂x + aξ R

y (g), v5
=

∂
∂y + aξ R

x (g) in T Q. Note that both D := Ker(AD) = Span{a ∂
∂x + ξ R

y (g) ; −a ∂
∂y +

ξ R
x (g) ; ξ R

z (g)} and γ are G-invariant for the natural right action of G on Q. Also notice that on the previous
sections we considered a left G action on Q, so we turn the above natural right action into a left one by defining
g · (x, y, h) = (x, y, hg−1) in R2

× G.
In this case, since shape space B is R2, the controlled curve c̃(t) = (x(t), y(t)) represents the position of the

contact point between the ball and the table as describing a given trajectory. So the problem is to find out how the ball
rotates (i.e. to find g(t)) due to the presence of the non-sliding affine constraints and to the fact that the contact point is
moving in this known way (x(t), y(t)). From Section 3.2, we know that the corresponding equations for the unknown
g(t) ∈ G are the equations of motion (12) and the constraint equation (24). Also from that section, we know that we
can simplify the constraint equation by considering an affine gauge dAff

0 (t) satisfying (25). In the present example,
g(x,y,g)

= Span{Adg−1ξz} with ξz ∈ so(3) the generator of rotations about the z-axis. Also, the momentum map for
the above G-symmetric Lagrangian is J (ẋ, ẏ, ġ) = −mk2g−1ġ ∈ so(3) ' so∗(3). One possible affine gauge choice
is

dAff
0 (t) = (x(t), y(t), gAff(t))

with ġAffg
−1
Aff =

1
a (−ẏ + Ωx) ξx +

1
a (ẋ + Ω y) ξy , i.e., with no z-(spatial) angular velocity component. Consequently,

the full solution c(t) = (x(t), y(t), gtot(t)) is written as
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c(t) = g(t) · dAff
0 (t) = (x(t), y(t), gAff(t)g

−1(t))

with g(t) satisfying:

(1) (Constraints) g−1ġ ∈ gdAff
0 (t)

= Span{AdgAff(t)−1ξz}

(2) (Motion)
(

d
dt J (ẋ, ẏ, ġ), Ad

(gAff(t)g−1(t))
−1ξz

)
so(3)

= 0.

It is easy to see that, by calling gtot(t) = gAff(t)g−1(t), Eq. (2) above reduces to J S
z (ċ) := mk2

(
ġtotg

−1
tot , ξz

)
so(3)

=

const., i.e. the z-component of the (spatial) angular momentum is conserved, since(
d
dt

J (ẋ, ẏ, ġ), Adg−1
tot

ξz

)
so(3)

=
d
dt

(
J (ẋ, ẏ, ġ), Adg−1

tot
ξz

)
so(3)

+

(
J (ẋ, ẏ, ġ), Adg−1

tot
adġtotg

−1
tot

ξz

)
so(3)

=
d
dt

J S
z (ċ) + mk2

(
g−1

tot ġtot, Adg−1
tot

adġtotg
−1
tot

ξz

)
so(3)

and the second term in the r.h.s. above vanishes. Notice that, although we have a conservation law, it is a 1-dimensional
one and no non-trivial reconstruction phase formulas for g(t) follow from it.

Remark 5.1 (Conservation due to Symmetry). Using Remark 2.6, we can easily see, by considering G as being only
rotations about the z-axis and acting by left multiplication on Q, that Eq. (11) becomes directly the above z-component
conservation of the corresponding (spatial) angular momentum. Nevertheless, notice that this setting does not give any
insight on the constraint-base-induced motion g(t).

Now, from (1) above, we get

g−1ġ = Adg−1
Aff(t)

ωzξz

and from (2) that

ωz = const.

So, finally, the full base-induced group variable gtot(t) in the full system’s motion c(t) is obtained as a product
of the two simpler factors gAff(t)g−1(t) described above. Note that, in this simple example, the factorization
result we obtained following our general considerations is the same as what we obtain by proposing the solution
gtot(t) = gAff(t)g−1(t) for the constraints plus conservation equations as expressed in Ref. [2]:

ġtot =
1
a

(−ẏ + Ωx) ξ R
x (gtot) +

1
a

(ẋ + Ω y) ξ R
y (gtot) + (const) ξ R

z (gtot).

5.3. A non-holonomically constrained self-deforming body

This is an example of a base controlled and D-constrained system presenting phase formulas due to (non-full)
horizontal symmetries (Section 4.4, [2]). The system consists of two rigid spheres as in Fig. 1. The small ball is
attached to the inside of the big one (holonomic constraint) which, in turn, can move freely. The key ingredient is
that the first rotates without sliding with respect to the second. This last requirement represents a non-holonomic
D-constraint on the total system and we further assume that no external forces are present. This gives a simplified
model for a small robot (the small ball) moving inside a space-craft (the big ball). As we shall see below, this example
generalizes the treatment of [3] by allowing non-holonomic constraints to induce total body motion from arbitrarily
controlled (base) variables living in a smaller space within the usual shape space Q/SO(3).

The configuration space is Q = SO(3) × S2
r × SO(3) 3 (R1, r2, R3) defined by requiring ri (t) = Ri (t)rio ∈ R3

to be the position of the point i with respect to a reference system with axes parallel to those of a chosen inertial
one and with origin in the corresponding ball’s center (see Fig. 1). We denoted by S2

r the 2-sphere of radius
r = ‖r2(t)‖ = const. In this coordinates, the Lagrangian takes the simple kinetic energy form

L(Ṙi ) = T (Ṙi ) =
1
2

(
R−1

1 Ṙ1, I1 R−1
1 Ṙ1

)
so(3)

+
1
2
µr2 (ṙ2 · ṙ2) +

1
2

(
R−1

3 Ṙ3, I3 R−1
3 Ṙ3

)
so(3)
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Fig. 1. The big ball’s rotation R1(t) and the position of the center C M2 of the small ball, both as seen from reference system S̃, are described by
r1(t) = R1(t)r10 and r2(t) = R2(t)r20, respectively. S̃ has its origin at the center C M1 of the big ball and axes parallel to those of an inertial
frame S. The rotation R3(t) of the small ball about its center C M2 is described by the vector r3(t) = R3(t)r30.

and the 2 non-sliding non-holonomic D-constraint equations (for r20 = r ž) read

−
a

r

(
AdR−1

2

(
−Ṙ1 R−1

1 + Ṙ3 R−1
3

)
, ξx

)
so(3)

=

(
AdR−1

2

(
−Ṙ1 R−1

1 + Ṙ2 R−1
2

)
, ξx

)
so(3)

−
a

r

(
AdR−1

2

(
−Ṙ1 R−1

1 + Ṙ3 R−1
3

)
, ξy

)
so(3)

=

(
AdR−1

2

(
−Ṙ1 R−1

1 + Ṙ2 R−1
2

)
, ξy

)
so(3)

.
(53)

Above, I1 = diag( 2
5 m1(r + a)2), I3 = diag( 2

5 m2a2), with a the small ball’s radius, are the inertia tensors of the balls
with respect to their respective centers in the standard basis {ξi } of so(3) formed by the generators of i-axis rotations,
i = x, y, z, and µ =

m1m2
m1+m2

.

Remark 5.2 (R2 Expressions). It can be easily seen that every expression depending on R2 given within this
subsection, like the constraints above, is invariant under R2(t)  R2(t)Rz(t) with Rz(t) a rotation about the z-
axis. This means that they really depend on r2(t) = r R2(t)ž, but we keep the rotational dependence for simplicity.
Given r2(t) ∈ S2

r , one choice for R2(t) is given by the horizontal lift in the Uz(1) bundle SO(3) −→ S2
r (see [3]).

The distribution D ⊂ T Q of tangent vectors satisfying Eqs. (53) has dimension dim D = dim Q − 2 = 6.
Now, consider the group G = SO(3)2

3 (R, g3) (left) acting on Q via

(R, g3) · (R1, r2, R3) = (R R1, Rr2, R R3g−1
3 ).

It is easy to see that both L and D are G-invariant. Shape space B = Q/G can be parameterized by elements r2,1 ∈ S2
r

and hypothesis (H1) of Section 2.1 is satisfied. We also assume (H2) to hold, which, in this case, means that the
controlled part of the motion is represented by a gauge curve d0(t) = (e, r2,1(t), e). If c(t) = (R1(t), R2(t), R3(t)) ∈

Q represents the full system’s motion, then r2,1(t) = R−1
1 (t)r2(t) represents the position of the C M2 as seen from a

reference system with origin at C M1 and with axes rotating with R1, i.e. a system rotating with the big ball. Indeed,
the full motion can be written as c(t) = (R1(t), R−1

3 (t)R1(t)) · d0(t) and note that no constraints remain on the
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controlled variable r2,1 (it can be arbitrarily chosen within B ' S2
r ). Also, notice that from the dim Q = 8 variables,

as 2 are being freely controlled, we are left with 4 equations of motion plus the 2 D-constraints to solve.
More physically, the problem is to find the total reorientation of the system R1(t) induced by the inside motion.

This, in turn, is generated by the (known) inner translational motion d0(t) of the small ball and followed by its D-
induced rotational motion R−1

1 (t)R3(t), both as seen from a system fixed to the big ball, due to the presence of the
non-sliding constraints and fulfilling the corresponding Lagrangian equations of motion.

Remark 5.3 (Measurement of r2,1). The curve r2,1(t) is the one that an astronaut standing in the space-craft, modeled
by the big ball, would see as the small ball’s center moves (see Fig. 1). Consequently, it can also be measured in lab
conditions, when the space-craft is attached to the floor (and cannot rotate), but when the small ball rehearses the
same translational motion r2,1 that will occur in space. Notice that this cannot be done with the rotational motion of
the small ball since it must obey an additional equation of motion ((54) below) which is not invariant under rotating
R1(t)-reference frame transformations.

We now turn to the equations of motion. Consider the subgroup H := {(R, e), R ∈ SO(3)} ⊂ G. It can be easily
checked that hQ = (Lie(H))Q ⊂ D and that, for q = (R1, r2, R3) ∈ Q,

gq
= h ⊕ Span{AdR−1

3
AdR2ξ

3
z }

with ξ3
z seen as an element of the second so(3) copy in Lie(G) = so(3) ⊕ so(3). The above means that we are in the

presence of non-full h-horizontal symmetries [2]. Consequently,

i∗h J (ċ) = I1 Ṙ1 R−1
1 + µr2 (r2 × ṙ2)

f
+ I3 Ṙ3 R−1

3 = I1 Ṙ1 R−1
1 + AdR2 I20 R−1

2 Ṙ2 + I3 Ṙ3 R−1
3

in so(3)
metric
' so∗(3) = Lie(H)∗ is a conserved quantity. Above, f denotes the (Lie algebra) isomorphism R3

−→

so(3) and

I2,0 = µr2

1
1

0

 .

This horizontal momentum represents the total angular momentum of the system [5].

Remark 5.4 (Relevance of the Present Approach due to Constraints). We would like to remark that, if we considered
only H as symmetry group, as it is done for non-constrained self deforming bodies (see [3]), then the D-constraints are
no longer vertical (Remark 2.2). In other words, the corresponding base variables (r2,1 and R3,1) become constrained
and it would make no sense to think of them as arbitrarily controlled or given. By considering the bigger G instead,
we restrict to the smaller base-variables space which are actually a priori arbitrarily controllable.

Note that dim gq
= 4, so the above conservation law represents only 3 of equations of motion (11). The remaining

equation is(
d
dt

(
R−1

3 Ṙ3

)
, AdR−1

3
AdR2ξz

)
so(3)

= 0, (54)

which states that there is no angular acceleration of the smaller ball rotation in the C M1–C M2 direction. This same
effect is observed in the ball on a rotating turntable example (see [2] and the previous section).

Finally, from Section 4.4, we know that we can write (reconstruction) phase formulas for the system’s motion due
to the horizontal conservations. Below, we summarize the Q-reconstruction procedure for obtaining the solution c(t)
from the base motion c̃(t).

• We start with d0(t) = (e, r2,1(t), e), and c(t) = (R1(t), r2(t), R3(t)) ∈ Q representing the desired solution.
• To use the results of the previous sections, we choose a non-holonomic gauge dNH

0 . We fix it by dNH
0 (t) =

(R1,N H , R−1
3,N H R1,N H )(t) · d0(t) with[

constraints + 1eq.
]

−
a

r

(
−Ṙ1,N H R−1

1,N H + Ṙ3,N H R−1
3,N H

)
= AdR1,N H Ṙ2,1 R−1

2,1
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i∗h J (ḋNH

0 ) = 0
]

I3 Ṙ3,N H R−1
3,N H +

(
I1 + AdR1,N H R2,1 I20 AdR−1

2,1

)
Ṙ1,N H R−1

1,N H

+ AdR1,N H R2,1 I20 R−1
2,1 Ṙ2,1 = 0

with r2,1(t) = r R2,1(t)ž and trivial initial conditions for Ri,N H , i = 1, 3. Equivalently, we could have chosen the
horizontal non-holonomic gauge (17) leading to the same i∗h J (ḋNH

0 ) = 0 equation plus constraint equation (53)
plus one more (involved) equation.

• We now write c(t) = (R, g3)(t) · dNH
0 (t). Notice that, since the horizontal symmetries are non-full, Eq. (16) for

g(t) ≡ (R, g3)(t) is non-trivial and yields

g−1
3 ġ3 = λ(t) AdR−1

3,N H
AdR1,N H R2,1ξz

with λ(t) ∈ R to be determined. The corresponding vertical equations of motion for g(t) read

[h-conservation] i∗h J (ċ) = const = AdR

(
I h

dNH
0

R−1 Ṙ − λI3 AdR1,N H R2,1ξz

)
=: AdRΠ h(t)

[
Eq. (54)

] ·

λ =

(
d
dt

[
AdR−1

3,N H
R−1 Ṙ + R−1

3,N H Ṙ3,N H

]
, AdR−1

3,N H
AdR1,N H R2,1ξz

)
so(3)

(55)

with I h

dNH
0

= I1 + AdR1,N H R2,1 I2,0 Ad
(R1,N H R2,1)

−1 + I3 : h −→ h ' h∗
' so(3) the corresponding restricted inertia

tensor.

Above, g3 is s.t. R−1
1,N H R3,N H g−1

3 = R3,1(t) = R−1
1 (t)R3(t) represents the rotational motion of the small ball

as seen from a reference system with origin at C M2 and axes rotating with the big ball, i.e., is what an astronaut
standing inside the big ball would see (see Remark 5.3 and Fig. 1). Also, λ = (g−1

3 ġ3, AdR−1
3,N H

AdR1,N H R2,1ξz)so(3) =

(ġ3g−1
3 , AdR−1

3 R2
ξz)so(3) represents a dynamical correction to the (spatial) angular velocity of the small ball in the

direction C M1–C M2 needed for Eq. (54) to be satisfied from an inertial reference frame.
Notice that the above equations of motion for R and λ are coupled. Nevertheless, in the obtained factorization

c(t) =

(
R R1,N H , R R1,N H R2,1, R R3,N H g−1

3

)
every element as defined above represents a simpler piece from which the overall motion is constructively induced
from the known one R2,1(t) on the base. This shows how we can (geometrically) take advantage of the kinematical
structure of the system for writing the controlled solution. Moreover, the global reorientation R can be further
factorized by implementing the phase formulas corresponding to the h- conservation reconstruction (Section 4.4).

The phase formula for R. From Section 4.4, we know that R(t) can be reconstructed from the body total
angular momentum Π h(t) solution on Oi∗h J (ċ) ' S2

radius=i∗h J (ċ) ⊂ Lie(H) = so(3) ' R3 within the U (1)-bundle

SO(3) −→ S2
radius=‖i∗h J‖

(see details in [3]). In this case, Π h(t) is given by Eq. (55) and, from (45) via so(3) ' R3,

Π̇ h(t) = Π h(t) ×

(
(I h

dNH
0 (t)

)−1
[
Π h(t) + λI3 R1,N H

r2,1

r

])
with × standing for the usual vector product in R3. This equation coincides with the one generically presented in [3]
but in a very precise non-holonomic gauge, d̃NH

0 = (e, g3) · dNH
0 , which makes the whole procedure compatible with

the D-constraints. Also in this case, this equation appears coupled to another equation, i.e. that of λ(t), since the
horizontal symmetries are non-full.

The phase formula corresponding to the reconstruction of Section 4.4, for i∗h J 6= 0, reads

R(t) = exp

(
θDyn(t)

i∗h J

‖i∗h J‖

)
RGeom

1 (t)

with the constant i∗h J ∈ so(3). The geometric phase RGeom(t) is the horizontal lift of the body total angular

momentum curve Π h(t) in the U (1)-bundle SO(3) −→ S2
radius=‖i∗h J‖

with respect to the connection Ag(ġ) =
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(ġg−1,
i∗h J

‖i∗h J‖
)so(3) (for details, see [3]). The dynamical phase θDyn(t) ∈ U (1) = Hi∗h J is defined by (recall

Section 4.4)

θDyn(t) =
1∥∥∥i∗h J
∥∥∥
∫ t

t1
ds

2K

(
d
dt

c(s)

)
− 2Kint(s) + λ(s)

(
2
5

m2a2
)(

ξz,
(

I h
e

)−1
AdR−1

2 (s)i
∗

h J

)
so(3)

+

λ(s)2
(

2
5 m2a2

)2

2
5 m1(r + a)2 +

2
5 m2a2

+ θ
Dyn
0

where K represents the kinetic energy of the whole Q system given in Appendix A, I h
e = I1 + I2,0 + I3 and rotation

R2(t) gives the physical motion of C M2 in c(t). Notice the unavoidable (dynamical) λ dependence in the dynamical
phase formula due to the fact that the horizontal symmetries are non-full (also compare to the non-D-constrained case
of [3]).

Finally, it is worth noting that, when the solution Π h(t) is simple and closed for t ∈ [t1, t2], then

R(t2) = exp

(θDyn(t2) + θGeom
) i∗h J∥∥∥i∗h J

∥∥∥
 R1(t1)

with θDyn(t2) as given above and θGeom given (mod. 2π ) by minus the (signed) solid angle enclosed by Π h(t) in
the 2-sphere of radius ‖i∗h J‖ within R3

' so(3). The above is an example of a (D-)generalized self deforming body
phase formula, not encoded in [3].

Remark 5.5 (Control). The above formulas can be useful for control purposes, this is, when you want to find the
suitable base curve R2,1(t) inducing a certain desired global reorientation R(t2).

Remark 5.6 (The Case i∗h J = 0). In this case, the equation for R is geometrical, meaning that it is a horizontal lift

equation along d̃NH
0 = (e, g3)·dNH

0 with respect to the h-mechanical connection. Nevertheless, this equation is coupled
to that of g3 (equiv. λ) which is not of geometric nature. Consequently, the complete motion induction from the initial
controlled base variables c̃(t) = R2,1(t) ∈ B is not entirely geometrical. The cause is that horizontal symmetries
are non-full (compare with Remark 4.11) and so they do not exhaust the whole vertical dynamics (i.e. because of the
additional dynamical equation (54), see also [2] for similar comments).

5.4. Deforming body with dipolar magnetic moment in an external magnetic field

Here we describe the motion of a (deforming) body with magnetic moment M ∈ R3 in the presence of an external
magnetic field. This system is modeled as an affine D-constrained and controlled system for which momentum is not
conserved because of the magnetic applied forces and which is, thus, not covered by the analysis of [3]. We shall
assume the following hypothesis about the magnetic nature of the system to hold:

• the magnetic moment is proportional to the total angular momentum J , i.e.

M = γ J

where γ is the gyromagnetic ratio [5].
• the interaction with an external magnetic field B is of dipolar type [5], this is

d
dt

J = M × B

where M × B is the external torque acting on the dipole and × denotes the standard vector product in R3.
• the above holds even when the shape c(t) ∈ Q (see [9,11]) of the underlying body and the field B(t) are changing

with time.
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From the above assumptions, the equation of motion for the angular momentum J (ċ) of the body is

d
dt

J (ċ) = γ J (ċ) × B(t).

If we define the corresponding Larmor frequency vector [5] as ωl(t) := −γ B(t) ∈ R3, then the above can be re-
expressed as

J (ċ) = hM (t)L0
Ψ
≡ Ad∗

hM (t) L̂0

where hM (t) ∈ SO(3) is defined by

·

hM h−1
M (t) = ω̂l(t)

hM (t1) = I d

where f denotes the (Lie algebra) isomorphism R3
−→ so(3) and L̂0 denotes the initial value J (ċ(t1)) seen as an

element of so(3)∗ through the usual isomorphisms.
The equations for the motion of such a system can be derived from the affine-constrained Lagrangian system

(T Q,L,AD,Γ ) where

• Q −→ Q/G is the configuration space of the underlying deforming body [9,3] with symmetry group G = SO(3),
• the Lagrangian is given by the kinetic energy contribution L(q̇) =

1
2 kq(q̇, q̇), where kq is a G-invariant metric on

T Q induced by the standard R3-metric [9],
• AD is the mechanical principal connection 1-form on Q −→ Q/G given by

AD(q̇) = I −1
q J (q̇)

with Iq giving the usual inertia tensor of the body and J : T Q −→ g∗ the usual angular momentum map,
• Γ : Q −→ g is the map given by

Γ (q) = I −1
q (Ad∗

hM (t) L̂0).

The affine constraints for the physical curve c(t) become

AD(ċ(t)) = Γ (c(t)). (56)

We now continue with the analysis in the controlled case, i.e., we add hypothesis (H2) that the base curve c̃(t) ∈ Q/G,
representing the changing body’s shape, is given.

From Section 4.5, we know that D corresponds to the mechanical connection AD and that equations of motion
(12) for g(t) are trivial. The only remaining D-constraint equations for g(t) in a mechanical gauge dMec

0 (t) (18) with
dMec

0 (t1) = c(t1), read

Ad∗

g(t) I g
dMec

0 (t)

(
g−1ġ

)
= Ad∗

hM (t) L̂0

g(0) = I d.

Also following Section 4.5, we call

RM (t) = h−1
M (t)g(t) ∈ SO(3)

and note that

Ad∗

RM (t) IdMec
0 (t)

(
g−1ġ

)
= L̂0

is a conserved quantity. The passage from g to RM can be understood as passing to describe the system from a new
reference frame which is rotating via hM (t) with respect to the original (inertial) frame, with spatial angular velocity
ωl(t) (see [5] pp. 231).

Then, following Appendix B once more, the rotation RM (t) can be reconstructed from the body angular momentum
(5) Π (t) = IdMec

0 (t)

(
g−1ġ

)
within the U (1)-bundle L−1(L̂0) ' SO(3) −→ OL̂0

. Note that OL̂0
' S2 for L̂0 6= 0
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and that the equation for Π (t) within OL̂0
reads

d
dt

Π (t) = Π (t) × Ψ
(

R−1
M

·

RM

)
= Π (t) × Ψ

(
I −1
dMec

0 (t)
Π (t) − Adg−1 ω̂l(t)

)
.

The reconstruction procedure follows the lines of [3] and Section 4.5. Suppose that the solution Π (t) describes a
closed simple curve on the sphere S2

= OL̂0
, Π (t1) = Π (t2) = L̂0; then

RM (t2) = exp

(θDyn(t2) + θGeom)
L̂0∥∥∥L̂0

∥∥∥


where the geometric phase angle θGeom is (mod 2π ) minus the signed solid angle determined by the closed path Π (t)
on the sphere and the dynamical phase θDyn(t) is

θDyn(t) =
1∥∥∥L̂0

∥∥∥
∫ t

t1
ds

(〈
Π (s), I −1

dMec
0 (s)

Π (s)

〉
−

〈
Ĵ (ċ), ω̂l(s)

〉)
.

In the above expression, the first term gives 2K − 2Kint, where K represents the rotational kinetic energy (see
Appendix A) and the second term is the magnetic potential energy of the system (see [5] pp. 230). Finally, the
corresponding phase formula for the physical curve c(t) ∈ Q

c(t2) = hM (t2) · exp

(
θDyn(t2)

L̂0

‖L̂0‖

)
· exp

(
θGeom L̂0

‖L̂0‖

)
· dMec

0 (t2)

which determines the exact position of the system for the dynamically defined time t2 in which the body angular
momentum Π (t) returns to its initial value. This is the affine-constrained (magnetic) version of the result obtained
in [3].
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Appendix A. Kinetic energy

Here we derive an expression for the kinetic energy of the mechanical system on Q, in terms of the controlled
variables curve d0(t) and the group unknown g(t).

We shall assume that the kinetic energy of the underlying simple mechanical system on Q (with or without controls)
is given by a G-invariant metric Riemannian on Q. This means that, if k : T Q ⊗ T Q −→ T Q denotes this metric,
the kinetic energy reads:

K : T Q −→ R

K (vq) =
1
2

kq(vq , vq).

Now, on our controlled system, the physical curve c(t) ∈ Q is of form (1) and, then, the velocity ċ(t) is given by (3).
Thus, the kinetic energy on the controlled curve becomes

K (ċ(t)) = Kint(t) +
1
2

〈I0(t)(ξ(t)), ξ(t)〉 + 〈J0(t), ξ(t)〉 (57)

where

Kint(t) =
1
2

kd0(t)

(
ḋ0(t), ḋ0(t)

)
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shall be called the internal (or gauge) kinetic energy and ξ(t) = g−1 d
dt g(t) ∈ g, I0(t) = Id0(t), J0(t) := J (ḋ0(t)) as

in Section 3.1.
In terms of the body momentum Π (t) defined by Eq. (5), the expression takes the form:

K

(
d
dt

c(t)

)
= Kint(t) +

1
2

〈
I −1
0 (t)(Π (t)),Π (t)

〉
−

1
2

〈
I −1
0 (t)(J0(t)), J0(t)

〉
where the last term can be interpreted as a gauge-dependent energy contribution which appears because of the use of
the “moving reference system” represented by d0(t) in Q.

Remark A.1 (Mechanical Energy). If there are also potential forces present in the mechanical system on Q,
represented by a potential V : Q −→ R, then the total mechanical energy is E = K ( d

dt c(t)) + V (g · d0(t)). If
V is G-invariant, then E = K ( d

dt c(t)) + V (d0(t)). Notice that as, in general, the control forces are non-potential and
time-dependent, they do work on the system. So the above mechanical energy is not conserved during the controlled
motion.

Remark A.2 (Gauge Potential Interaction). In terms of (1-d) gauge field theories, the term 〈J0(t), ξ(t)〉 can be seen
as a coupling between the gauge field J0 and the gauge variables ξ (see also Remark 2.11).

Recall the mechanical gauge defined by (18). In this gauge, the kinetic energy is given by two uncoupled
contributions:

K

(
d
dt

c(t)

)
= Kint(t) +

1
2

〈I0(t)(ξ(t)), ξ(t)〉 = Kint(t) +
1
2

〈
I −1
0 (t)(Π (t)),Π (t)

〉
.

Appendix B. Reconstruction on G −→ Oµ

Consider the two maps [7] T ∗G
Body coord.

↔ G × g∗
L
⇒
π

g∗, given by

L(g,Π ) = Ad∗
gΠ

π(g,Π ) = Π

and suppose that we have a curve (g(t),Π (t)) ∈ G × g∗ satisfying L(g(t),Π (t)) = µ = const. The idea of this
appendix is to reconstruct g(t) from Π (t) by means of the fact that Π (t) = Ad∗

g−1(t)
µ.

Note that Π (t) lies in the coadjoint orbit Oµ ⊂ g∗ through µ. For reconstruction [6], we need to consider a

principal connection on the Gµ-principal bundle G
π

−→ Oµ, where Gµ := {g ∈ G; Ad∗
gµ = µ} denotes the stabilizer

subgroup. This bundle corresponds to the reduction L−1(µ) ≈ G
π

−→ Oµ, where the Gµ action on L−1(µ) ⊂ G ×g∗

is the one induced by usual left action (in body coordinates) of G on T ∗G. Using the principal bundle isomorphism

: L−1(µ)
≈

−→ G

: (g, Ad∗

g−1µ) 7−→ g

we see that a principal connection on G
π

−→ Oµ can be defined by a choice of a complement H O Re ⊂ g to the
isotropy Lie algebra gµ = Lie(Gµ), i.e., g = H O Re ⊕gµ, and by then right translating this complement to any point
g ∈ G. There is no canonical way of choosing H O Re in general. So, let P : g −→ gµ be a linear projector onto gµ

such that

Adh ◦ P = P ◦ Adh (58)

for all h ∈ Gµ and define H O Re = Ker(P). The corresponding connection 1-form AP : T G −→ gµ induced by P
is then given by

AP (vg)g := P(vgg−1)

for vg ∈ TgG and vgg−1 denoting the derivative at g of the right translation by g−1 in G.
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Example B.1 (Ad-invariant Metrics). If the Lie algebra g is equipped with an Ad-invariant scalar product (, ), then
let P be the orthogonal projector with respect to (, ) onto gµ. It can be easily seen that this projector P satisfies (58),

inducing a principal connection on G
π

−→ Oµ.

Now, we shall make use of this connection to reconstruct g(t) from a solution Π (t) on the coadjoint orbit Oµ.
Following [6]:

• consider the horizontal lift gG(t) ∈ G from gG(t1) = g(t1) of the base curve Π (t) ∈ Oµ with respect to the
connection AP ,

• find hD(t) as the curve in Gµ fixed by requiring that

g(t) = hD(t) · gG(t)

and thus yielding the desired solution of the reconstruction equation Π (t) = Ad∗

g−1(t)
µ, for the initial value g(t1).

The group elements in the above decomposition of g(t) at time t , hD(t) and gG(t), are usually called the dynamic
phase and the geometric phase, respectively. The curve hD(t) must be a solution of

d
dt

hDh−1
D (t) = AP

(
d
dt

g

)
g

(59)

with hD(t1) = e.
Suppose now that g has an Ad-invariant scalar product (, ) as in Example B.1. This bilinear form induces a vector

space isomorphism Ψ : g∗
−→ g which transforms the coadjoint action into the adjoint action of G. Let u1 =

Ψ (µ)
‖Ψ (µ)‖

and {ui }
dim gµ

i=1 denote an orthonormal basis with respect to (, ) of the vector subspace gµ ⊂ g. Note that this can
always be done since Ψ(µ) ∈ gµ. The orthogonal projector, in this case, can be written as

P(v) = Σ dim gµ

i=1 (ui , v) ui

and, thus,

d
dt

hDh−1
D (t) = Σ dim gµ

i=1

(
ui ,

d
dt

gg−1
)

ui . (60)
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